题目内容
4.在一个不透明的袋子中装有红、黄两种颜色的球共20个,每个球除颜色外完全相同.某学习兴趣小组做摸球实验,将球搅匀后从中随机摸出1个球,记下颜色后再放回袋中,不断重复.下表是活动进行中的部分统计数据.| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
| 摸到红球的次数m | 59 | 96 | 118 | 290 | 480 | 601 |
| 摸到红球的频率$\frac{m}{n}$ | 0.59 | 0.64 | 0.58 | 0.58 | 0.60 | 0.601 |
(2)“摸到红球”的概率的估计值是0.6(精确到0.1)
(3)试估算袋子中红球的个数.
分析 (1)用摸到红球的次数除以所有摸球次数即可求得摸到红球的概率;
(2)大量重复试验频率稳定到的常数即可得到概率的估计值;
(3)用求得的摸到红球的概率乘以球的总个数即可求得红球的个数.
解答 解:(1)填表如下:
| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
| 摸到红球的次数m | 59 | 96 | 118 | 290 | 480 | 601 |
| 摸到红球的频率$\frac{m}{n}$ | 0.59 | 0.64 | 0.58 | 0.58 | 0.60 | 0.601 |
故)“摸到红球”的概率的估计值是0.6.
故答案为:0.6;
(3)20×0.6=12(只).
答:口袋中约有红球12只.
点评 此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
练习册系列答案
相关题目
16.若一个多边形的内角和与它的外角和相等,则这个多边形是( )
| A. | 三角形 | B. | 四边形 | C. | 五边形 | D. | 六边形 |