题目内容

因式分解:
(1)x4+2x3+1+2(x+x2
(2)x4+y4+(x+y)4
(3)(x+1)4+(x2-1)2+(x-1)4
考点:因式分解
专题:
分析:(1)首先重新分组,进而利用十字相乘法以及公式法分解因式进而得出答案;
(2)把前两项配方,第三项展开,整理后利用完全平方公式分解因式即可;
(3)将式子变形为(x+1)4+2(x+1)2(x-1)2+(x-1)4-(x+1)2(x-1)2,根据完全平方公式,平方差公式分解因式即可.
解答:解:(1)x4+2x3+1+2(x+x2
=x4+2x3+x2+x2+2x+1
=x2(x2+2x+1)+(x+1)2
=x2(x+1)2+(x+1)2
=(x+1)2(x2+1);

(2)x4+y4+(x+y)4
=(x2+y22-2x2y2+(x2+2xy+y22
=(x2+y22-2x2y2+(x2+y22+4xy(x2+y2)+4x2y2
=2(x2+y22+2x2y2+4xy(x2+y2
=2[(x2+y22+x2y2+2xy(x2+y2)]
=2(x2+xy+y22

(3)(x+1)4+(x2-1)2(x-1)4
=(x+1)4+(x+1)2(x-1)2+(x-1)4
=(x+1)4+2(x+1)2(x-1)2+(x-1)4-(x+1)2(x-1)2
=(x+1+x-1)2-(x+1)2(x-1)2
=(2x)2-(x+1)2(x-1)2
=[2x+(x+1)(x-1)][2x-(x+1)(x-1)]
=(x2+2x-1)(x2+2x+1)
=(x+1)2(x2+2x-1).
点评:考查了利用分组分解法进行因式分解,难度较大,利用配方和完全平方公式,平方差公式整理是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网