题目内容
16.分析 根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k+1=4,再解出k的值即可.
解答
解:如图:
∵四边形ABCD、HBEO、OECF、GOFD为矩形,
又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,
∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,
∴S△CBD-S△BEO-S△OFD=S△ADB-S△BHO-S△OGD,
∴S四边形HAGO=S四边形CEOF=2×2=4,
∴xy=k+1=4,
解得k=3
故答案为3.
点评 本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,关键是判断出S四边形CEOF=S四边形HAGO.
练习册系列答案
相关题目
11.
如图,点P1,P2在反比例函数y=$\frac{1}{x}$(x>0)的图象上,△P1OA1,△P2A1A2,都是等腰直角三角形,斜边OA1,A1A2在x轴上,则A1A2的长为( )
| A. | -1+$\sqrt{2}$ | B. | 1+$\sqrt{2}$ | C. | -2+2$\sqrt{2}$ | D. | 2$\sqrt{2}$ |