题目内容

14.如图,B,C,E三点在一条直线上,△ABC和△DCE均为等边三角形,连接AE,DB.
(1)AE和DB有何大小关系,请说明理由;
(2)如果把△DCE绕点C顺时针再旋转一个角度,(1)中的结论还成立吗?

分析 (1)根据等边三角形边长相等的性质和各内角为60°的性质可求得△BCD≌△ACE,根据全等三角形对应边相等的性质即可求得AE=BD.
(2)根据题意画出图形,证明方法与(1)相同.

解答 解:(1)AE=DB,
∵△ABC、△DCE均为等边三角形,
∴BC=AC,CD=CE,∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
∵在△ACE和△BCD中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{CE=CD}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
∴AE=BD.

(2)成立,
成立AE=BD;理由如下:
如图,

∵△ABC、△DCE均为等边三角形,
∴BC=AC,CD=CE,∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
∵在△ACE和△BCD中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{CE=CD}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
∴AE=BD.

点评 本题考查了等边三角形的性质的运用及全等三角形的判定和性质的运用.解决本题的关键是根据待求AE与BD明确所需求证的三角形全等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网