题目内容

16.如图,已知,在△ABC中,∠C=90°,AC=AE,DE⊥AB于点E,且∠CDA=50°,则∠BDE的度数为(  )
A.40°B.50°C.10°D.80°

分析 利用HL得到直角三角形ACD与直角三角形AED全等,利用全等三角形对应角相等得到∠ADC=∠ADE,求出∠CDE的度数,即可求出∠BDE的度数.

解答 解:∵DE⊥AB,
∴∠C=∠AED=90°,
在Rt△ACD和Rt△AED中,
$\left\{\begin{array}{l}{AD=AD}\\{AC=AE}\end{array}\right.$,
∴△ACD≌△AED(HL),
∴∠EDA=∠CDA=50°,
∴∠BDE=180°-∠ADC-∠EDA=80°,
故选D.

点评 本题考查了全等三角形的判定与性质、平角的定义等知识,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网