题目内容

17.如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若点A的坐标为(-2,0),则点E的坐标为(1,$\sqrt{3}$).

分析 先连接OE,由于正六边形是轴对称图形,并设EF交Y轴于G,那么∠GOE=30°;在Rt△GOE中,则GE=1,OG=$\sqrt{3}$.即可求得E的坐标.

解答 解:连接OE,由正六边形是轴对称图形知:
在Rt△OEG中,∠GOE=30°,OE=2.
∴GE=1,OG=$\sqrt{3}$
∴E(1,$\sqrt{3}$),
故答案为(1,$\sqrt{3}$).

点评 本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,求出GE和OG的长是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网