题目内容

9.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.

分析 连接PB、PC,根据角平分线上的点到角的两边距离相等可得PM=PN,线段垂直平分线上的点到线段两端点的距离相等可得PC=PB,然后利用“HL”证明Rt△PMC和Rt△PNB全等,根据全等三角形对应边相等证明即可.

解答 证明:如图,连接PB,PC,
∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,
∴PM=PN,∠PMC=∠PNB=90°,
∵P在BC的垂直平分线上,
∴PC=PB,
在Rt△PMC和Rt△PNB中,
$\left\{\begin{array}{l}{PC=PB}\\{PM=PN}\end{array}\right.$,
∴Rt△PMC≌Rt△PNB(HL),
∴BN=CM.

点评 本题考查了全等三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记各性质并作辅助线构造出全等三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网