题目内容
3.分析 因为ED是BC的垂直平分线,那么BD=CD,而AD是∠BAC的平分线,DM⊥AB,DN⊥AC,根据角平分线的性质可得DM=DN,再根据HL可判定Rt△BMD≌Rt△CND,从而有BM=CN.
解答
证明:连接BD,CD,如图,
∴DE是BC的垂直平分线,
∴BD=CD,
∵AD是∠BAC的平分线,DM⊥AB,DN⊥AC,
∴DM=DN,
在Rt△BMD和Rt△CND中,
$\left\{\begin{array}{l}{BD=CD}\\{DM=DN}\end{array}\right.$,
∴Rt△BMD≌Rt△CND(HL),
∴BM=CN.
点评 本题考查了全等三角形的判定和性质、线段垂直平分线的性质,解题的关键是掌握垂直平分线的定义以及性质,掌握角平分线的性质以及具体的应用.
练习册系列答案
相关题目
8.某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为( )
| A. | $\frac{20}{81}$ | B. | $\frac{10}{81}$ | C. | $\frac{5}{243}$ | D. | $\frac{10}{243}$ |