【题目】已知函数,,其中为自然对数的底数,.
(1)求证:;
(2)若对于任意,恒成立,求的取值范围;
(3)若存在,使,求的取值范围.
【题目】已知函数在点处的切线与y轴垂直.
(1)若,求的单调区间;
(2)若,成立,求a的取值范围
【题目】已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是( )
A. B. C. D.
【题目】已知圆C1:x2+y2=1与圆C2:x2+y2﹣6x+m=0.
(1)若圆C1与圆C2外切,求实数m的值;
(2)在(1)的条件下,若直线x+2y+n=0与圆C2的相交弦长为2,求实数n的值.
【题目】将边长为2的正沿着高折起,使,若折起后四点都在球的表面上,则球的表面积为( )
【题目】已知以为首项的数列满足:
(1)当,时,求数列的通项公式;
(2)当,时,试用表示数列前100项的和;
(3)当(是正整数),,正整数时,判断数列,,,是否成等比数列?并说明理由.
【题目】设椭圆,其长轴长是短轴长的倍,过焦点且垂直于轴的直线被椭圆截得的弦长为.
(1)求椭圆的方程;
(2)点是椭圆上横坐标大于的动点,点在轴上,圆内切于,试判断点在何位置时的长度最小,并证明你的判断.
【题目】如图,地图上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高位10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.
(1)若圆形标志物半径为25m,以PG所在直线为X轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即)的正切值为,求该圆形标志物的半径.
【题目】已知函数,且函数为偶函数。
(1)求的解析式;
(2)若方程有三个不同的实数根,求实数m的取值范围。
【题目】在三棱锥P﹣ABC中,D为AB的中点.
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.