题目内容
【题目】已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是( )
A. B. C. D.
【答案】B
【解析】
先利用等边三角形中心的性质,结合勾股定理计算得球的半径,过的最大截面是经过球心的截面,可由球的半径计算得出.过最小的截面是和垂直的截面,先计算得的长度,利用勾股定理计算得这个截面圆的半径,由此计算得最小截面的面积.
画出图象如下图所示,其中是球心,是等边三角形的中心.根据等边三角形中心的性质有,,设球的半径为,在三角形中,由勾股定理得,即,解得,故最大的截面面积为.在三角形中,,由余弦定理得.在三角形中,,过且垂直的截面圆的半径,故最小的截面面积为.综上所述,本小题选B.
练习册系列答案
相关题目