题目内容

【题目】如图,地图上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高位10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从AF的圆弧.

1)若圆形标志物半径为25m,以PG所在直线为X轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;

2)若在点P处观测该圆形标志的最大视角(即)的正切值为,求该圆形标志物的半径.

【答案】12

【解析】

试题(1)求圆标准方程,只需确定圆心及半径,由题意知圆心为,半径为,因此,求直线PF的方程实质求过点P的圆的切线方程,利用点斜式即圆心到直线距离等于半径求解:设直线方程:,则解得;(2)本题实质为已知圆的切线方程,求圆的半径,同(1)先求出直线PF的斜率:因为,所以.再利用圆心到切线距离等于半径求半径:直线方程:,即,所以

试题解析:解:(1)圆

直线方程:

设直线方程:

因为直线与圆相切,所以,解得

所以直线方程:,即

设直线方程:,圆

因为,所以

所以直线方程:,即

因为直线与圆相切,所以

化简得,即

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网