即3x-y-11=0.
答案 3x-y-11=0
此时,x=-1,y=(-1)3+3×(-1)2+6×(-1)-10=-14.
∴斜率最小的切线方程是y+14=3(x+1),
∴(y′)min=3.
∴y′=3x2+6x+6=3(x+1)2+3.
11.★曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程是 .
分析 本题考查常见函数的导数及导数的几何意义.
解 ∵y=x3+3x2+6x-10,
所以点(,p)为所求的点.
答案 D
第Ⅱ卷(非选择题共60分)
代入抛物线方程得x===.
令(d2)′y=0,即-2p=0,解得y=.这是函数在定义域内的唯一极值点,所以必是最值点.
则有d2=(p-x)2+(p-y)2=(p-)2+(p-y)2.所以(d2)′=2(p-)(-)+2(p-y)(-1)=-2p.
C.(,p) D.(,p)
分析 本题考查利用函数的导数求解函数的最值.首先建立关于距离的目标函数关系式,然后合理地选取变量,通过求导数的方法求与最值有关的问题.本题也可以用解析几何中数形结合法求解.
解 设抛物线上的任意点(x,y)到点M的距离为d,