(A)24 (B)14 (C)13 (D)11.5
2006年普通高等学校招生全国统一考试(山东卷)
文科数学(必修+选修Ⅰ)
第Ⅱ卷(共90分)
注意事项:
(3) 记bn=,求{bn}数列的前项和Sn,并证明Sn+=1.
2.答卷前将密封线内的项目填写清楚。
得分
评卷人
(13)若 .
(14)已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是 .
(15)如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的 中点,则直线AD 与平面B1DC所成角的正弦值为 .
(15题图)
(16)下列四个命题中,真命题的序号有 (写出所有真命题的序号).
①将函数y=的图象按向量y=(-1,0)平移,得到的图象对应的函数表达式为y=
②圆x2+y2+4x-2y+1=0与直线y=相交,所得弦长为2
③若sin(+)= ,则sin(+)=,则tancot=5
④如图,已知正方体ABCD- A1B1C1D1,P为底面ABCD内一动点,P到平面AA1D1D的距离与到直线CC1的距离相等,则P点的轨迹是抛物线的一部分.
(16题图)
(17)已知f(x)=Asin()(A>0,>0,0<<函数,且y=f(x)的最大值为2,其图象相邻两对称轴的距离为2,并过点(1,2).
(1)求;
(2)计算f(1)+f(2)+… +f(2 008).
(18)(本小题满分12分)
设函数f(x)=ax-(a+1)ln(x+1),其中a-1,求f(x)的单调区间。
(19)(本小题满分12分)
如图ABC-A1B1C1,已知平面平行于三棱锥V-A1B1C1的底面ABC,等边∆ AB1C所在的平面与底面ABC垂直,且ABC=90°,设AC=2a,BC=a.
(1)求证直线B1C1是异面直线与A1C1的公垂线;
(2)求点A到平面VBC的距离;
(3)求二面角A-VB-C的大小.
(19题图)
(20) (本小题满分12分)
袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量的概率分布和数学期望;
(3)计分介于20分到40分之间的概率.
(21)(本小题满分12分)
双曲线C与椭圆有相同的热点,直线y=为C的一条渐近线.
(1) 求双曲线C的方程;
(2) 过点P(0,4)的直线l,求双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合).当 =,且时,求Q点的坐标.
(22)(本小题满分14分)
已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,…
(1) 证明数列{lg(1+an)}是等比数列;
(2) 设Tn=(1+a1) (1+a2) …(1+an),求Tn及数列{an}的通项;
1.用钢笔或圆珠笔直接答在试题卷中。
22.(本小题满分14分)
已知函数f(x)=kx3-3x2+1(k≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)的极小值大于0, 求k的取值范围.
21. (本小题满分12分)
如图,三定点A(2,1),B(0,-1),C(-2,1); 三动点D,E,M满足=t, = t , =t , t∈[0,1]. (Ⅰ) 求动直线DE斜率的变化范围; (Ⅱ)求动点M的轨迹方程.
20. (本小题满分12分)
已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an .
19. (本小题满分12分)
如图,α⊥β,α∩β=l , A∈α, B∈β,点A在直线l 上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求:
(Ⅰ) 直线AB分别与平面α,β所成角的大小; (Ⅱ)二面角A1-AB-B1的大小.