|
|
|
|
|
甲店 |
200 |
170 |
|
乙店 |
160 |
150 |
(1)设分配给甲店
型产品
件,这家公司卖出这100件产品的总利润为
(元),求
关于
的函数关系式,并求出
的取值范围;(3分)
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(4分)
(3)为了促销,公司决定仅对甲店
型产品让利销售,每件让利
元,但让利后
型产品的每件利润仍高于甲店
型产品的每件利润.甲店的
型产品以及乙店的
型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?(3分)
28.(10分)已知,在Rt△OAB中,∠OAB=900,∠BOA=300,AB=2。若以O为坐标原点,OA所在直线为
轴,建立如图所示的平面直角坐标系,点B在第一象限内。将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处。
(1)求点C的坐标;(2分)
(2)若抛物线
(
≠0)经过C、A两点,求此抛物线的解析式;(3分)
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作
轴的平行线,交抛物线于点M。问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由。(5分)
注:抛物线
(
≠0)的顶点坐标为
,对称轴公式为![]()
22.(10分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE。求证:(1)△ABC≌△DEF;(2)GF=GC。