15.已知F为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,a为双曲线虚轴的一个顶点,过点F、A的直线与双曲线的一条渐近线在y轴右侧的交点为B,若$\overrightarrow{AB}$=($\sqrt{2}$-1)$\overrightarrow{AF}$,则此双曲线的离心率是( )
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
14.设min{p,q}表示p,q两者中的较小者,若函数f(x)=min{3-x,log2x},则满足f(x)≤$\frac{1}{2}$的x的集合为( )
A. | (0,2]∪[$\frac{5}{2}$,+∞) | B. | [$\sqrt{2}$,$\frac{5}{2}$] | C. | (0,$\sqrt{2}$]∪[$\frac{5}{2}$,+∞) | D. | (0,$\sqrt{2}$)∪($\frac{5}{2}$,+∞) |
12.设全集U=R,集合A={x|2x>1},B={x|x2-4x-5≤0},则(∁UA)∩B等于( )
A. | [-1,0) | B. | (0,5] | C. | [-1,0] | D. | [0,5] |
9.某市教育局邀请教育专家深入该市多所中小学,开展听课,访谈及随堂检测等活动.他们把收集到的180节课分为三类课堂教学模式:教师主讲的为A模式,少数学生参与的为B模式,多数学生参与的为C模式,A、B、C三类课的节数比例为3:2:1.
(Ⅰ)为便于研究分析,教育专家将A模式称为传统课堂模式,B、C统称为新课堂模式.根据随堂检测结果,把课堂教学效率分为高效和非高效,根据检测结果统计得到如下2×2列联表(单位:节)
请根据统计数据回答:有没有99%的把握认为课堂教学效率与教学模式有关?并说明理由.
(Ⅱ)教育专家用分层抽样的方法从收集到的180节课中选出12节课作为样本进行研究,并从样本中的B模式和C模式课堂中随机抽取2节课,求至少有一节课为C模式课堂的概率.
参考临界值表:
参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
其中n =a +b +c +d).
0 246764 246772 246778 246782 246788 246790 246794 246800 246802 246808 246814 246818 246820 246824 246830 246832 246838 246842 246844 246848 246850 246854 246856 246858 246859 246860 246862 246863 246864 246866 246868 246872 246874 246878 246880 246884 246890 246892 246898 246902 246904 246908 246914 246920 246922 246928 246932 246934 246940 246944 246950 246958 266669
(Ⅰ)为便于研究分析,教育专家将A模式称为传统课堂模式,B、C统称为新课堂模式.根据随堂检测结果,把课堂教学效率分为高效和非高效,根据检测结果统计得到如下2×2列联表(单位:节)
高效 | 非高效 | 总计 | |
新课堂模式 | 60 | 30 | 90 |
传统课堂模式 | 40 | 50 | 90 |
总计 | 100 | 80 | 180 |
(Ⅱ)教育专家用分层抽样的方法从收集到的180节课中选出12节课作为样本进行研究,并从样本中的B模式和C模式课堂中随机抽取2节课,求至少有一节课为C模式课堂的概率.
参考临界值表:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
其中n =a +b +c +d).