题目内容
18.圆x2+y2=4被直线l:kx-y-2k=0截得的劣弧所对的圆心角的大小为$\frac{π}{3}$,则直线l倾斜角的大小为$\frac{π}{3}$或$\frac{2π}{3}$.分析 根据题意画出图形,结合图形得出直线l过定点P(2,0),再求出直线l与圆的另一个交点,从而求出直线的斜率与倾斜角.
解答 解:直线l:kx-y-2k=0变形为k(x-2)-y=0,
∴该直线过定点P(2,0);
又圆x2+y2=4被直线l:kx-y-2k=0截得的劣弧所对的圆心角为$\frac{π}{3}$,如图所示;
∴∠POA=$\frac{π}{3}$,
∴A(1,$\sqrt{3}$);
∴直线的斜率为kPA=$\frac{\sqrt{3}-0}{1-2}$=-$\sqrt{3}$,
∴直线l倾斜角为$\frac{2π}{3}$;
同理,B(1,-$\sqrt{3}$),kPB=$\frac{-\sqrt{3}-0}{1-2}$,
∴直线l的倾斜角为$\frac{π}{3}$;
综上,直线l倾斜角为$\frac{π}{3}$或$\frac{2π}{3}$.
故答案为:$\frac{π}{3}$或$\frac{2π}{3}$.
点评 本题考查了直线的倾斜角与斜率的应用问题,也考查了数形结合的解题方法,是基础题目.
练习册系列答案
相关题目
6.已知点P为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一点,点F1,F2分别为椭圆的左、右焦点,点I为△PF1F2的内心,若△PIF1和△PIF2的面积和为1,则△IF1F2的面积为( )
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
3.命题p:已知α⊥β,则?l?α,都有l⊥β;命题q:已知l∥α,则?m?α,使得l不平行于m(其中α、β是平面,l、m是直线),则下列命题中真命题的是( )
A. | (¬p)∧(¬q) | B. | p∨(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
7.某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如下表所示:
(Ⅰ)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?
(Ⅱ)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(Ⅲ)学生的积极性与对待班级工作的态度是否有关系?请说明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
积极参加班级工作 | 不积极参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性不高 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(Ⅱ)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(Ⅲ)学生的积极性与对待班级工作的态度是否有关系?请说明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
8.空间直角坐标系中,已知原点为O,A(1,0,0),B(0,1,0),C(0,0,1),在三棱锥O-ABC中任取一点P(x,y,z),则满足$\sqrt{{x^2}+{y^2}+{z^2}}≤\frac{1}{2}$的概率是( )
A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{10}$ |