ÌâÄ¿ÄÚÈÝ
9£®Ä³ÊнÌÓý¾ÖÑûÇë½ÌÓýר¼ÒÉîÈë¸ÃÊжàËùÖÐСѧ£¬¿ªÕ¹Ìý¿Î£¬·Ã̸¼°ËæÌüì²âµÈ»î¶¯£®ËûÃÇ°ÑÊÕ¼¯µ½µÄ180½Ú¿Î·ÖΪÈýÀà¿ÎÌýÌѧģʽ£º½ÌʦÖ÷½²µÄΪAģʽ£¬ÉÙÊýѧÉú²ÎÓëµÄΪBģʽ£¬¶àÊýѧÉú²ÎÓëµÄΪCģʽ£¬A¡¢B¡¢CÈýÀà¿ÎµÄ½ÚÊý±ÈÀýΪ3£º2£º1£®£¨¢ñ£©Îª±ãÓÚÑо¿·ÖÎö£¬½ÌÓýר¼Ò½«Aģʽ³ÆΪ´«Í³¿ÎÌÃģʽ£¬B¡¢Cͳ³ÆΪпÎÌÃģʽ£®¸ù¾ÝËæÌüì²â½á¹û£¬°Ñ¿ÎÌýÌѧЧÂÊ·ÖΪ¸ßЧºÍ·Ç¸ßЧ£¬¸ù¾Ý¼ì²â½á¹ûͳ¼ÆµÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£¨µ¥Î»£º½Ú£©
¸ßЧ | ·Ç¸ßЧ | ×Ü¼Æ | |
пÎÌÃģʽ | 60 | 30 | 90 |
´«Í³¿ÎÌÃģʽ | 40 | 50 | 90 |
×Ü¼Æ | 100 | 80 | 180 |
£¨¢ò£©½ÌÓýר¼ÒÓ÷ֲã³éÑùµÄ·½·¨´ÓÊÕ¼¯µ½µÄ180½Ú¿ÎÖÐÑ¡³ö12½Ú¿Î×÷ΪÑù±¾½øÐÐÑо¿£¬²¢´ÓÑù±¾ÖеÄBģʽºÍCģʽ¿ÎÌÃÖÐËæ»ú³éÈ¡2½Ú¿Î£¬ÇóÖÁÉÙÓÐÒ»½Ú¿ÎΪCģʽ¿ÎÌõĸÅÂÊ£®
²Î¿¼ÁÙ½çÖµ±í£º
P£¨K2¡Ýk0£© | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
ÆäÖÐn =a +b +c +d£©£®
·ÖÎö £¨¢ñ£©ÓÉÁÐÁª±íÖеÄÊý¾Ý¼ÆËãËæ»ú±äÁ¿k2µÄ¹Û²âÖµ£¬ÓÉÁÙ½çÖµ±íÖÐÊý¾ÝµÃ³öͳ¼Æ·ÖÎö£»
£¨¢ò£©Çó³öÑù±¾ÖÐB¡¢CģʽµÄ¿ÎÌø÷Óм¸½Ú£¬ÓÃÁоٷ¨¼ÆËã»ù±¾Ê¼þÊý£¬Çó³ö¶ÔÓ¦µÄ¸ÅÂÊ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÁÐÁª±íÖеÄͳ¼ÆÊý¾Ý¼ÆËãËæ»ú±äÁ¿k2µÄ¹Û²âֵΪ£º
¡ßk2=$\frac{{n£¨ad-bc£©}^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
=$\frac{18{0£¨60¡Á50-40¡Á30£©}^{2}}{£¨60+40£©£¨30+50£©£¨60+30£©£¨40+50£©}$=9£¾6.635
ÓÉÁÙ½çÖµ±íP£¨k2¡Ý6.635£©¡Ö0.010£¬
¡àÓÐ99%µÄ°ÑÎÕÈÏΪ¿ÎÌÃЧÂÊÓë½ÌѧģʽÓйأ» ¡£¨6·Ö£©
£¨¢ò£©Ñù±¾ÖеÄBģʽ¿ÎÌúÍCģʽ¿ÎÌ÷ֱðÊÇ4½ÚºÍ2½Ú£¬
·Ö±ð¼ÇΪB1¡¢B2¡¢B3¡¢B4¡¢C1¡¢C2£¬´ÓÖÐÈ¡³ö2½Ú¿Î¹²ÓÐ15ÖÖÇé¿ö£º
£¨C1£¬B1£©£¬£¨C1£¬B2£©£¬£¨C1£¬B3£©£¬£¨C1£¬B4£©£¬£¨C2£¬B1£©£¬£¨C2£¬B2£©£¬
£¨C2£¬B3£©£¬£¨C2£¬B4£©£¬£¨C1£¬C2£©£¬£¨B1£¬B2£©£¬£¨B1£¬B3£©£¬£¨B1£¬B4£©£¬
£¨B2£¬B3£©£¬£¨B2£¬B4£©£¬£¨B3£¬B4£© ¡£¨8·Ö£©
ÖÁÉÙÓÐÒ»½Ú¿ÎΪCģʽ¿ÎÌõÄʼþΪ
£¨C1£¬B1£©£¬£¨C1£¬B2£©£¬£¨C1£¬B3£©£¬£¨C1£¬B4£©£¬£¨C2£¬B1£©£¬£¨C2£¬B2£©£¬
£¨C2£¬B3£©£¬£¨C2£¬B4£©£¬£¨C1£¬C2£©¹²9ÖÖ£» ¡£¨10·Ö£©
¡àÖÁÉÙÓÐÒ»½Ú¿ÎΪCģʽ¿ÎÌõĸÅÂÊΪP=$\frac{9}{15}$=$\frac{3}{5}$£® ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁË2¡Á2ÁÐÁª±íµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁË·Ö²ã³éÑù·½·¨µÄÓ¦ÓÃÎÊÌâÒÔ¼°ÓÃÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂʵÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
A£® | £¨-¡Þ£¬0£©¡È£¨$\frac{1}{2}$£¬+¡Þ£© | B£® | [0£¬$\frac{1}{2}$] | C£® | £¨0£¬$\frac{1}{2}$ £© | D£® | £¨-¡Þ£¬0]¡È[$\frac{1}{2}$£¬+¡Þ£© |
A£® | $\frac{1}{3}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{5}{6}$ |
A£® | £¨0£¬2]¡È[$\frac{5}{2}$£¬+¡Þ£© | B£® | [$\sqrt{2}$£¬$\frac{5}{2}$] | C£® | £¨0£¬$\sqrt{2}$]¡È[$\frac{5}{2}$£¬+¡Þ£© | D£® | £¨0£¬$\sqrt{2}$£©¡È£¨$\frac{5}{2}$£¬+¡Þ£© |
A£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È | B£® | Ïò×óƽÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶È | ||
C£® | Ïò×óƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È | D£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶È |
A£® | $\frac{\sqrt{5}}{2}$ | B£® | $\frac{3}{2}$ | C£® | $\frac{5}{2}$ | D£® | $\sqrt{5}$+1 |