14、(2009年烟台市)23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

  (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出yx之间的函数表达式;(不要求写自变量的取值范围)

  (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

  (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

解:(1)根据题意,得

.······················································································ 2分

(2)由题意,得

整理,得.················································································ 4分

解这个方程,得.·········································································· 5分

要使百姓得到实惠,取.所以,每台冰箱应降价200元.································· 6分

(3)对于

时,······················································································ 8分

所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.    10分

13、(2009年山西省太原市)28.(本小题满分9分)两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图.

(1)求关于的表达式;

(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为(千米).请直接写出关于的表达式;

(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.在下图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.

解:(1)方法一:由图知的一次函数,设········································ 1分

      图象经过点(0,300),(2,120),∴··························· 2分

      解得························································································ 3分

      ∴关于的表达式为····················· 4分

方法二:由图知,当时,时,

      所以,这条高速公路长为300千米.

   甲车2小时的行程为300-120=180(千米).

      ∴甲车的行驶速度为180÷2=90(千米/时).··········································· 3分

      ∴关于的表达式为().······················ 4分

(2)······················································································ 5分

(3)在中.当时,

即甲乙两车经过2小时相遇.············································································· 6分

中,当.所以,相遇后乙车到达终点所用的时间为(小时).

乙车与甲车相遇后的速度

 (千米/时).

    ∴(千米/时).··································· 7分

   乙车离开城高速公路入口处的距离(千米)与行

驶时间(时)之间的函数图象如图所示.·············· 9分

12、(2009年山西省)(24.(本题8分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(万元)与进货量(吨)近似满足函数关系;乙种水果的销售利润(万元)与进货量(吨)近似满足函数关系(其中为常数),且进货量为1吨时,销售利润为1.4万元;进货量为2吨时,销售利润为2.6万元.

(1)求(万元)与(吨)之间的函数关系式.

(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为吨,请你写出这两种水果所获得的销售利润之和(万元)与(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?

解:(1)由题意,得:解得······················································· (2分)

       ∴····················································································· (3分)

(2)

   ∴··················································································· (5分)

    时,有最大值为6.6. ····························· (7分)

(吨).

答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.     (8分)

 0  403131  403139  403145  403149  403155  403157  403161  403167  403169  403175  403181  403185  403187  403191  403197  403199  403205  403209  403211  403215  403217  403221  403223  403225  403226  403227  403229  403230  403231  403233  403235  403239  403241  403245  403247  403251  403257  403259  403265  403269  403271  403275  403281  403287  403289  403295  403299  403301  403307  403311  403317  403325  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网