23. (1)解:图2中△ABE≌C△ACD
证明如下:
∵△ABC与AED均为等腰直角三角形
∴AB=AC ,AE=AD, ∠BAC=∠EAD=90°………………3分
∴∠BAC+∠CAE=∠EAD+∠CAE
即∠BAE=∠CAD ………………4分
∴△ABE≌△ACD………………6分
(2)证明:由(1)△ABE≌△ACD知
∠ACD=∠ABE=45°………………7分
又∠ACB=45°
∴∠BCD=∠ACB+∠ACD=90°
∴DC⊥BE………………9分
22.
[证](1)过点分别作,,分别是垂足,由题意知,,,,,从而.
(2)过点分别作,,分别是垂足,
由题意知,.在和中,
,,.,
又由知,,.
解:(3)不一定成立.
21. 证明:,.
在和中,..
20. 证明:,(2分)
又,,
.(5分)
. (6分)
19. 证明:∵∠QAP=∠BAC
∴∠QAP+∠PAB=∠PAB+∠BAC
即∠QAB=∠PAC
在△ABQ和△ACP中
AQ=AP
∠QAB=∠PAC
AB=AC
18. 证明:
17. 解:(1);.
(2);.
证明:①由已知,得,,.
又,..
在和中,
,,,
,.
②如图2,延长交于点.
在中,,又,
.
..
(3)成立.
证明:①如图3,,.
②如图4,延长交于点,则.
在中,,
15. 解:(1) 3-;
(2)30°;
(3)证明:在△AEF和△D′BF中,
∵AE=AC-EC, D’ B=D’ C-BC,
又AC=D’ C,EC=BC,∴AE=D’ B.
又 ∠AEF=∠D’ BF=180°-60°=120°,∠A=∠CD’E=30°,
∴△AEF≌△D’ BF.∴AF=FD’
16. (1)证明:∵AD∥BC
∴∠F=∠DAE
又∵∠FEC=∠AED
CE=DE
∴△FEC≌△AED
∴CF=AD
(2)当BC=6时,点B在线段AF的垂直平分线上
其理由是:
∵BC=6 ,AD=2 ,AB=8
∴AB=BC+AD
又∵CF=AD ,BC+CF=BF
∴AB=BF
∴点B在AF的垂直平分线上。
14. 证明:(1)平分,.
(2)连结.
,
又是公共边,.
13. 证明: 四边形和四边形都是正方形