1.(福建21)(1)(本小题满分7分)选修4-4:矩阵与变换
已知矩阵M所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标
(2)(本小题满分7分)选修4-4:坐标系与参数方程
已知直线l:3x+4y-12=0与圆C: (为参数 )试判断他们的公共点个数
(3)(本小题满分7分)选修4-5:不等式选讲
解不等式∣2x-1∣<∣x∣+1
32. 解:(1)图中共有5个三角形;··········································· (2分)
(2)△≌△. ·············································· (3分)
∵ △是等边三角形,∴ ∠∠.···················· (4分)
∵ 、、是边、、的中点,
∴AE=AG=CG=CF=AB. ····································································· (6分)
∴ △≌△. ········································································· (7分)
31. (1)如图:
(2)证明即可.
30. 解:(1)略.
(2)证明:∵BC=BD,点E是BC的中点,点F是BD的中点,
∴BE=BF.又∠ABC=∠ABD,AB=AB,∴△ABE≌△ABF.
29. 解:(1)如右图;
(2).
理由:过作于,四边形为矩形,.
,,
.
在和中,
28. 证明:
∴在和中
27. 证明:,,
·················································································································· 1分
在与中 ·········································· 2分
································································ 1分
1分
26. (1) 证明:∵∠A=∠A′ AC=A′C ∠ACM=∠A′CN=900-∠MCN
∴
(2)在Rt△ABC中
∵,∴∠A=900-300=600
又∵,∴∠MCN=300,
∴∠ACM=900-∠MCN=600
∴∠EMB′=∠AMC=∠A=∠MCA=600
∵∠B′=∠B=300
所以三角形MEB′是Rt△MEB′且∠B′=300
所以MB′=2ME
25. 证明:(1)∵CF∥BE∴EBD=FCD
又∵∠BDE=∠CDF,BD=CD
∴△BDE≌△CDF
(2)四边形BECF是平行四边形
由△BDE≌△CDF得ED=FD
∵BD=CD
∴四边形BECF是平行四边形
24. (1)(或相等)
(2)(或成立),理由如下
方法一:由,得
在和中
方法二、连接AD,同方法一,,所以AF=DC。
由。可证。
(3)如图,
方法一:由点B与点E重合,得,
所以点B在AD的垂直平分线上,
且
所以OA=OD,点O在AD的垂直平分线上,故。
方法二:延长BO交AD于点G。同方法一OA=OD,可证
则。