ÌâÄ¿ÄÚÈÝ
2£®£¨1£©½ðÊô°ôab²úÉúµÄµç¶¯ÊÆE
£¨2£©µçÈÝÆ÷Ëù´øµÄµçºÉÁ¿q£®
£¨3£©Õû¸ö»ØÂ·ÖвúÉúµÄ½¹¶úÈÈQ£®
·ÖÎö £¨1£©¸ù¾ÝÇиî²úÉúµÄ¸ÐÓ¦µç¶¯Êƹ«Ê½Çó³ö½ðÊô°ôab²úÉúµÄµç¶¯ÊÆ£®
£¨2£©¸ù¾Ýµç¶¯ÊƵĴóСÇó³öµç×èRÁ½¶ËµÄµçÔ´£¬¸ù¾Ýq=CUÇó³öµçÈÝÆ÷Ëù´øµÄµçºÉÁ¿£®
£¨3£©¸ù¾ÝÔ˶¯µÄÎ»ÒÆÇó³öÔ˶¯µÄʱ¼ä£¬Í¨¹ý½¹¶ú¶¨ÂÉÇó³öÕû¸ö»ØÂ·²úÉúµÄÈÈÁ¿£®
½â´ð ½â£¨1£©abÉϲúÉúµÄ¸ÐÓ¦µç¶¯ÊÆÎªÎª£º
E=BLv£®
£¨2£©µçÈÝÆ÷Á½¶ËµçѹΪ£º
$U=\frac{E}{4}$£®
µçÈÝÆ÷Ëù´øµÄµçºÉÁ¿Îª£º
q=CU
½âµÃ£º$q=\frac{BLvC}{4}$£®
£¨3£©Óɱպϵç·ŷķ¶¨ÂÉÓУº
I=$\frac{E}{4R}$£¬
t=$\frac{x}{v}$
Óɽ¹¶ú¶¨ÂÉÓУº
Q=I2£¨4R£©t£¬
½âµÃ£ºQ=$\frac{{B}^{2}{L}^{2}vx}{4R}$£®
´ð£º£¨1£©½ðÊô°ôab²úÉúµÄµç¶¯ÊÆEΪBLv£»
£¨2£©µçÈÝÆ÷Ëù´øµÄµçºÉÁ¿qΪ$\frac{BLvC}{4}$£®
£¨3£©Õû¸ö»ØÂ·ÖвúÉúµÄ½¹¶úÈÈQΪ$\frac{{B}^{2}{L}^{2}vx}{4R}$£®
µãÆÀ ±¾Ì⿼²éÁ˵ç´Å¸ÐÓ¦Óëµç·µÄ»ù±¾×ۺϣ¬ÕÆÎÕÇиî²úÉúµÄ¸ÐÓ¦µç¶¯Êƹ«Ê½£¬ÔËÓñպϵç·ŷķ¶¨ÂɽøÐÐÇó½â£¬»ù´¡Ì⣮
| A£® | ÀÁ¦Ëù×öµÄ¹¦Ò»¶¨µÈÓÚÏßȦËù²úÉúµÄÈÈÁ¿ | |
| B£® | °²ÅàÁ¦×öµÄ¹¦µÈÓÚÏßȦ²úÉúµÄÈÈÁ¿ | |
| C£® | ÈôÔÈËÙÀ³ö£¬ÔòÏßȦÏûºÄµÄ¹¦ÂÊÓëÔ˶¯ËٶȳÉÕý±È | |
| D£® | ÔÚÀ³öµÄÈ«¹ý³ÌÖУ¬µ¼Ïßºá½ØÃæ»ýËùͨ¹ýµÄµçÁ¿ÓëÔ˶¯¹ý³ÌÎÞ¹Ø |
| A£® | ´Ë¹ý³ÌÖÐͨ¹ýÏß¿ò½ØÃæµÄµçÁ¿Îª$\frac{3B{a}^{2}}{2R}$ | |
| B£® | ´Ë¹ý³ÌÖлØÂ·²úÉúµÄµçÄÜΪ$\frac{1}{2}$mv2 | |
| C£® | ´ËʱÏß¿òÖеĵ繦ÂÊΪ$\frac{{B}^{2}{a}^{2}{v}^{2}}{R}$ | |
| D£® | ´ËʱÏß¿òµÄ¼ÓËÙ¶ÈΪ$\frac{9{B}^{2}{a}^{2}v}{2mR}$ |
| A£® | µ¼Ìå¸Ë¸Õ½øÈë´Å³¡Ê±£¬µç×èRÖеĵçÁ÷·½ÏòÓÉMÖ¸ÏòM' | |
| B£® | µ¼Ìå¸Ë¸Õ½øÈë´Å³¡Ê±£¬µ¼Ìå¸ËÖеĵçÁ÷´óСΪ3.0A | |
| C£® | µ¼Ìå¸Ë¸Õ´©³ö´Å³¡Ê±ËٶȵĴóСΪ5.0m/s | |
| D£® | µ¼Ìå¸Ë´©¹ý´Å³¡µÄ¹ý³ÌÖÐÕû¸öµç·²úÉúµÄ½¹¶úÈÈΪ0.94J |
| A£® | ÔÚͼʾλÖÃʱ´©¹ýÕý·½ÐÎÏßȦÖеĴÅͨÁ¿ÎªÁ㣬¸ÐÓ¦µç¶¯ÊÆÒ²ÎªÁã | |
| B£® | µ±¿É±äµç×èRµÄ»¬Æ¬PÏòÉÏ»¬¶¯Ê±£¬µçѹ±íV2µÄʾÊý±£³Ö²»±ä | |
| C£® | µçѹ±íV1ʾÊýµÈÓÚNB¦ØL2 | |
| D£® | ´ÓͼʾλÖÿªÊ¼Ê±£¬Õý·½ÐÎÏßÈ¦Æ½Ãæ×ª¹ý60¡ãʱ£¬´Ëʱ¸Ãµçѹ±íV1ʾÊýµÈÓÚ$\frac{\sqrt{2}NB¦Ø{L}^{2}}{2}$ |