题目内容

13.如图,在竖直平面内有一竖直向上的匀强电场,电场强度为E.一个质量为m、带电量为+q的滑块B沿斜面体表面向下匀速运动,斜面体A静止在水平地面上.已知重力加速度为g,且mg>Eq.则下列说法正确的是(  )
A.斜面体A受到地面的静摩擦力方向向左
B.匀强电场大小不变,方向改为竖直向下,则滑块B加速下滑,斜面体A受到地面的静摩擦力方向向左
C.匀强电场大小不变,方向改为水平向左,则滑块B加速下滑,与电场方向竖直向上时相比,斜面体A受到地面的支持力减小
D.匀强电场大小不变,方向改为水平向右,则滑块B减速下滑,与电场方向竖直向上时相比,斜面体A受到地面的支持力增大

分析 由题,木块匀速下滑,合力为零;斜面保持静止状态,合力也为零.以木块和斜面整体为研究对象,分析受力情况,根据平衡条件分析地面对斜面的摩擦力和支持力.木块可能受两个力作用,也可能受到四个力作用.

解答 解:电场力F=qE,E向上物块匀速,则(mg-F)sinθ-μ(mg-F)cosθ=0,μ=tanθ;
A、以木块和斜面组成的整体为研究对象,分析受力情况,根据平衡条件得知地面对斜面没有摩擦力,如有摩擦力,整体的合力不为零,将破坏平衡状态与题矛盾,故A错误.
B、当施加力竖直向下的电场时,对滑块受力分析,沿斜面方向方向(mg+F)sinθ-μ(mg+F)cosθ=0,水平方向合力为零,故斜面和地面无摩擦力,故B错误;
C、设斜面体的质量是M,竖直向上的匀强电场,FN1=mg+Mg-F
匀强电场大小不变,方向改为水平向左,相当于在m上加一水平向左的力F,沿斜面方向:mgsinθ+Fcosθ-μ(mgcosθ-Fsinθ)=mgsinθ+Fcosθ-tanθ•(mgcosθ-Fsinθ)=$Fcosθ+\frac{Fsi{n}^{2}θ}{cosθ}$=$\frac{F}{cosθ}$=ma,
故物体向下做加速运动;对地面对斜面体的支持力FN2=mg+Mg-may=mg+Mg-$\frac{Fsinθ}{cosθ}$>mg+Mg-F,斜面受支持力变大了,故C错误;
D、匀强电场大小不变,方向改为水平向右,相当于在m上加一水平向右的力F,沿斜面方向:mgsinθ-Fcosθ-μ(mgcosθ+Fsinθ)=mgsinθ-Fcosθ-tanθ•(mgcosθ+Fsinθ)=$-\frac{F}{cosθ}$=ma′<0,
故物体做减速运动;对地面对斜面体的支持力FN3=mg+Mg+may=mg+Mg+$\frac{Fsinθ}{cosθ}$>mg+Mg-F,斜面受支持力变大了,故D正确;
故选:D

点评 本题中物块匀速下滑时,μ=tanθ,作为一个重要结论可在理解的基础上记住;本题可以等效成物体的重力增加或减少了F=Eq.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网