ÌâÄ¿ÄÚÈÝ

17£®ÎªÁËʹÁ£×Ó¾­¹ýһϵÁеÄÔ˶¯ºó£¬ÓÖÒÔÔ­À´µÄËÙÂÊÑØÏà·´·½Ïò»Øµ½Ô­Î»ÖÃOµã£¬Éè¼ÆÁËÈçͼËùʾµÄµç¡¢´Å³¡ÇøÓò£®×ó²àΪÁ½Ë®Æ½·ÅÖÃµÄÆ½ÐнðÊô°å£¬°å³¤¾ùΪl£¬ÇøÓò¢ñ£¨ÌÝÐÎPQCD£©ÄÚÓд¹Ö±Ö½ÃæÏòÀïµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈΪB£»ÇøÓò¢ò£¨Èý½ÇÐÎAPD£©ÄڵĴų¡·½ÏòÓë¢ñÄÚÏàͬ£¬µ«ÊÇ´óС¿ÉÒÔ²»Í¬£»ÇøÓò¢ó£¨ÐéÏßPDÖ®ÓÒ¡¢Èý½ÇÐÎAPDÖ®Í⣩µÄ´Å³¡Óë¢òÄÚ´óСÏàµÈ¡¢·½ÏòÏà·´£®ÒÑÖªµÈ±ßÈý½ÇÐÎAQCµÄ±ß³¤Îª2l£¬AC±ßˮƽ£¬P¡¢D·Ö±ðΪAQ¡¢ACµÄÖе㣮QC±ßµÄÖеãNÇ¡ºÃÔÚϽðÊô°åµÄÓҶ˵㣮´øÕýµçµÄÁ£×Ó´ÓÆ½ÐнðÊô°åµÄÖÐÐÄÖáÏß×ó¶ËOµãˮƽÉäÈ룬Ôڵ糡Á¦×÷ÓÃÏ´ÓNµãÒÔËÙ¶Èv´¹Ö±QCÉäÈëÇøÓòI£¬ÔÙ´ÓPµã´¹Ö±AQÉäÈëÇøÓò£¬ÓÖ¾­ÀúһϵÁÐÔ˶¯ºó£¬·µ»ØOµã£®Á£×ÓÖØÁ¦ºöÂÔ²»¼Æ£®Çó£º
£¨1£©¸ÃÁ£×ÓÔÚOµãÉäÈëµç³¡Ê±µÄËÙ¶È´óС£»
£¨2£©¸ÃÁ£×ӵıȺɣ»
£¨3£©¸ÃÁ£×Ó´ÓOµã³ö·¢£¬µ½Ôٴλص½OµãµÄÕû¸öÔ˶¯¹ý³ÌËùÓõÄʱ¼ä£®

·ÖÎö ¸ù¾ÝÔ˶¯µÄºÏ³ÉÓë·Ö½âÇó½â¸ÃÁ£×ÓÔÚOµãÉäÈëµç³¡Ê±µÄËÙ¶È´óС£»
Óɼ¸ºÎ¹ØÏµÇóµÃÁ£×ÓÔ²ÖÜÔ˶¯µÄ°ë¾¶£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóÁ£×ӵıȺɣ»
´øµçÁ£×ÓÔڵ糡¡¢´Å³¡ÖÐÔ˶¯µÄ×Üʱ¼ä°üÀ¨£ºµç³¡×ÜÍù·µµÄʱ¼ät0£¬ÇøÓòIÖеÄʱ¼ät1£¬ÇøÓò¢òºÍ¢óÖеÄʱ¼ät2

½â´ð ½â£º£¨1£©ÒòΪÁ£×ÓÒÔËÙ¶Èv´¹Ö±QCÉäÈëÇøÓòI£¬ÓÖÒòΪQCΪµÈ±ßÈý½ÇÐÎAQCµÄ×ó±ß£¬ËùÒÔv¸úˮƽ·½ÏòµÄ¼Ð½ÇΪ30¡ã
ÉèÁ£×ÓÔÚOµãˮƽÉäÈëµç³¡Ê±µÄËÙ¶È´óСΪv0£¬Ôò£º
v0=vcos30¡ã
½âµÃ£ºv0=$\frac{\sqrt{3}}{2}$v
£¨2£©ÉèÁ£×ÓµÄÖÊÁ¿Îªm£¬µçÁ¿Îªq£¬ÒòΪÁ£×ÓÔÚNµã£¬PµãµÄËÙ¶È·½Ïò¶¼¸ú´Å³¡±ß½ç´¹Ö±£¬ËùÒÔQµãΪÁ£×ÓÔÚÇøÓòIÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÔ²ÐÄ£¬Éè°ë¾¶ÎªR£¬Óɼ¸ºÎ¹ØÏµµÃ£º
R=l
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÂåÂ××ȹ«Ê½µÃ£º
qvB=m$\frac{{v}^{2}}{R}$
½âµÃ£º$\frac{q}{m}$=$\frac{v}{Bl}$
£¨3£©´øµçÁ£×ÓÔڵ糡¡¢´Å³¡ÖÐÔ˶¯µÄ×Üʱ¼ä°üÀ¨£ºµç³¡×ÜÍù·µµÄʱ¼ät0£¬ÇøÓòIÖеÄʱ¼ät1
ÇøÓò¢òºÍ¢óÖеÄʱ¼ät2
Ôڵ糡ÖУº¸ù¾ÝÀàÆ½Å×Ô˶¯¹æÂɵà t0=2$\frac{l}{{v}_{0}}$
ÁªÁ¢µÃ£ºt0=$\frac{4\sqrt{3}l}{3v}$
ÔÚÇøÓò¢ñÖУºÁ£×ÓµÄÔ˶¯¹ì¼£Èçͼ£¬ÊÇÁ½¶Î$\frac{1}{6}$Ô²»¡£¬¹Ê£¬ÔÚÇøÓòIÖеÄʱ¼äΪ£º
t1=2¡Á$\frac{¦Ðl}{3v}$
ÔÚÇøÓò¢òºÍÇøÓò¢óÖУºÁ£×Ó×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Ïàͬ£¬ÉèΪr£¬
·ÖÎöÖª£¬ÆäÔ˶¯¹ì¼£Èçͼ¼×»òÒÒÁ½ÖÖÇé¿ö£¬

¶ÔÓڹ켣¼×£¬Óɼ¸ºÎ¹ØÏµµÃ£º£¨4nr+3r£©=l
½âµÃ£ºr=$\frac{l}{4n+3}$£¨n=0£¬1£¬2£¬3¡­£©
·ÖÎö¿ÉÖª£¬Á£×ÓÔÚÇøÓò¢òºÍ¢óÖÐÔ˶¯µÄ×Ü·³ÌӦΪ£¨2n+1+$\frac{1}{6}$£©¸öÔ²ÖÜÖܳ¤£¬¼´£º
s=£¨2n+1+$\frac{1}{6}$£©2¦Ðr
ËùÒÔÁ£×ÓÔÚÇøÓò¢òºÍ¢óÄÚµÄÔ˶¯Ê±¼äΪt2=$\frac{s}{v}$
ÁªÁ¢µÃ£ºt2=$\frac{£¨12n+7£©¦Ðl}{3£¨4n+3£©v}$
¹ÊÁ£×ÓÔÚÈ«¹ý³ÌÖÐÔ˶¯µÄ×Üʱ¼äΪ£ºt=t0+t1+t2=$\frac{4\sqrt{3}l}{3v}$+$\frac{£¨20n+13£©¦Ðl}{3£¨4n+3£©v}$£¨n=0£¬1£¬2£¬3¡­£©
¶ÔÓڹ켣ÒÒ£¬Óɼ¸ºÎ¹ØÏµµÃ£º£¨4nr+r£©=l
½âµÃ£ºr=$\frac{l}{4n+1}$£¨n=0£¬1£¬2£¬3¡­£©
·ÖÎö¿ÉÖª£¬Á£×ÓÔÚÇøÓò¢òºÍ¢óÄÚÔ˶¯µÄ×Ü·³ÌӦΪ£¨2n+$\frac{5}{6}$£©¸öÔ²ÖÜÖܳ¤£¬¼´£º
s=£¨2n+$\frac{5}{6}$£©¡Á2¦Ðr
ËùÒÔÁ£×ÓÔÚÇøÓò¢òºÍ¢óÖÐÔ˶¯µÄʱ¼äΪt2=$\frac{s}{v}$
½âµÃ£ºt2=$\frac{£¨12n+5£©¦Ðl}{3£¨4n+1£©v}$
ËùÒÔÁ£×ÓÔÚÈ«¹ý³ÌÖÐÔ˶¯µÄ×Üʱ¼äΪ£ºt=t0+t1+t2=$\frac{4\sqrt{3}l}{3v}$+$\frac{£¨20n+7£©¦Ðl}{3£¨4n+1£©v}$£¨n=0£¬1£¬2£¬3¡­£©
´ð£º£¨1£©¸ÃÁ£×ÓÔÚOµãÉäÈëµç³¡Ê±µÄËÙ¶È´óСΪ$\frac{\sqrt{3}}{2}$v£»
£¨2£©¸ÃÁ£×ӵıȺÉ$\frac{v}{Bl}$£»
£¨3£©¸ÃÁ£×Ó´ÓOµã³ö·¢£¬µ½Ôٴλص½OµãµÄÕû¸öÔ˶¯¹ý³ÌËùÓõÄʱ¼äΪ$\frac{4\sqrt{3}l}{3v}$+$\frac{£¨20n+13£©¦Ðl}{3£¨4n+3£©v}$£¨n=0£¬1£¬2£¬3¡­£©»ò$\frac{4\sqrt{3}l}{3v}$+$\frac{£¨20n+7£©¦Ðl}{3£¨4n+1£©v}$£¨n=0£¬1£¬2£¬3¡­£©£®

µãÆÀ ±¾ÌâÊôÓÚ´øµçÁ£×ÓÔÚ×éºÏ³¡ÖÐÔ˶¯ÎÊÌ⣬×ÛºÏÐÔ½ÏÇ¿£®´Å³¡ÖÐÔ²ÖÜÔ˶¯Òª»­¹ì¼£·ÖÎöÔ˶¯¹ý³Ì£¬Ì½Ë÷¹æÂÉ£¬Ñ°ÕÒ°ë¾¶ÓëÈý½ÇÐαߵĹØÏµÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø