ÌâÄ¿ÄÚÈÝ
10£®£¨1£©Îª½øÐС°ÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ¡±µÄʵÑ飬ÓÐÏÂÁÐÆ÷²Ä¿É¹©Ñ¡Ôñ£ºA£®Ìú¼Ų̈ B£®´òµã¼ÆÊ±Æ÷ C£®¸´Ð´Ö½ D£®Ö½´ø E£®µÍѹ½»Á÷µçÔ´
F£®ÌìÆ½ G£®Ãë±í H£®µ¼Ïß I£®¿ª¹Ø K£®Ã×³ß J£®ÖØ´¸
ÔÚ¸ÃʵÑéÖУºÉÏÊöÆ÷²Ä²»±ØÒªµÄÊÇFG£®£¨Ö»Ìî×Öĸ´úºÅ£©
£¨2£©¹ØÓÚÕâһʵÑ飬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇB£®
A£®ÖØÎïӦѡÓÃÃܶÈСµÄÎïÌå
B£®Á½¸öÏÞλ¿×Ó¦ÔÚͬһÊúÖ±ÏßÉÏ
C£®ÊµÑéÖбØÐë²â³öÖØ´¸µÄÖÊÁ¿
D£®Ó¦ÏÈÊÍ·ÅÖ½´ø£¬ºó½ÓͨµçÔ´
£¨3£©ÈôÖÊÁ¿m=1kgµÄÖØ´¸×ÔÓÉÏÂÂ䣬ÔÚÖ½´øÉÏ´ò³öһϵÁеĵãÈçͼ1Ëùʾ£¬OΪµÚÒ»¸öµã£¬A£®B£®CΪÏàÁڵĵ㣬ÏàÁÚ¼ÆÊýµãµÄʱ¼ä¼ä¸ôΪ0.02s£¬³¤¶Èµ¥Î»ÊÇcm£¬È¡g=9.8m/s2£¬Çó´ÓµãOµ½´òϼÆÊýµãBµÄ¹ý³ÌÖУ¬ÎïÌåÖØÁ¦ÊÆÄܵļõÉÙÁ¿¡÷Ep=0.48J£¬¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek=0.47J£¨½á¹û¾ù±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£®
£¨4£©Ð¡Ã÷ÔÚʵÑéÖУ¬¾¶à´Î²âÁ¿·¢ÏÖ£¬ÖØ´¸¼õСµÄÖØÁ¦ÊÆÄÜ×ÜÊÇÂÔ´óÓÚÖØ´¸Ôö¼ÓµÄ¶¯ÄÜ£¨Ìî¡°´óÓÚ¡±£®¡°Ð¡ÓÚ¡±£©£¬ÕâÊÇÓÉÓÚϵͳÎó²îÔì³ÉµÄ£¨Ìϵͳ¡±£®¡°Å¼È»¡±£©£®
£¨5£©Ð¡Ã÷ÈÏΪ£¬ÔÚÎó²îÔÊÐíµÄ·¶Î§ÄÚ£¬ÖØ´¸µÄ»úеÄÜÊØºã£®Ð¡Ã÷Óã¨3£©ÖÐÊý¾Ý»v2-hͼÏó£¨Èçͼ2£©£¬Í¼ÏßµÄбÂÊΪk£¬ÔòËù²âµÃµ±µØÖØÁ¦¼ÓËÙ¶ÈΪ$\frac{k}{2}$£®
·ÖÎö Àí½â¸ÃʵÑéµÄʵÑéÔÀí£¬ÐèÒª²âÁ¿µÄÊý¾ÝµÈ£»Ã÷È·´òµã¼ÆÊ±Æ÷µÄʹÓã»Àí½âʵÑéÖеÄ×¢ÒâÊÂÏîÒÔ¼°ÈçºÎ½øÐÐÊý¾Ý´¦Àí£»¶ÔÓÚÈκÎʵÑé×¢Òâ´ÓʵÑéÔÀí¡¢ÊµÑéÒÇÆ÷¡¢ÊµÑé²½Ö衢ʵÑéÊý¾Ý´¦Àí¡¢ÊµÑé×¢ÒâÊÂÏîÕ⼸µãÈ¥¸ãÇå³þ£»
¸ù¾Ýƽ¾ùËٶȵÈÓÚÖÐʱ¿ÌµÄ˲ʱËÙ¶È£¬½áºÏÖÜÆÚµÈÓÚÆµÂʵĵ¹Êý£¬¼´¿ÉÇó½â£»
¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉ£¬½áºÏv2-hͼÏóµÄбÂʺ¬Ò壬¼´¿ÉÇó½â
½â´ð ½â£º£¨1£©ÔÚʵÑéÖÐÐèÒª¿Ì¶È³ß²âÁ¿Ö½´øÉϵãÓëµã¼äµÄ¾àÀë´Ó¶ø¿ÉÖªµÀÖØ´¸Ï½µµÄ¾àÀ룬ÒÔ¼°Í¨¹ýÖ½´øÉÏÁ½µãµÄ¾àÀ룬Çó³öƽ¾ùËÙ¶È£¬´Ó¶ø¿É֪˲ʱËÙ¶È£®Ö½´øÉÏÏàÁÚÁ½¼ÆÊ±µãµÄʱ¼ä¼ä¸ôÒÑÖª£¬ËùÒÔ²»ÐèÒªÃë±í£®ÖØ´¸µÄÖÊÁ¿¿É²â¿É²»²â£¬
¹ÊÑ¡£ºFG£®
£¨2£©A¡¢ÎªÁËÈÃÖØÎïµÄÔ˶¯½Ó½ü×ÔÓÉÂäÌ壬ºöÂÔ×èÁ¦£»ÖØÎïӦѡÔñÃܶȴóÌå»ýСµÄÎïÌ壻¹ÊA´íÎó£»
B¡¢ÊÖÌáÖ½´øÊ±Ê¹Ö½´ø±£³ÖÊúÖ±£¬ÓëÏÞλ¿×Ó¦ÔÚͬһÊúÖ±ÏßÉÏ£¬´Ó¶ø¼õСĦ²ÁÁ¦£¬¹ÊBÕýÈ·£»
C¡¢ÊµÑéÖв»Òª²â³öÖØ´¸µÄÖÊÁ¿£¬ÒòµÈʽÁ½±ß¾ùÓÐÖÊÁ¿£»¹ÊC´íÎó£»
D¡¢¿ªÊ¼¼Ç¼ʱ£¬Ó¦Ïȸø´òµã¼ÆÊ±Æ÷ͨµç´òµã£¬È»ºóÔÙÊÍ·ÅÖØ´¸£¬ÈÃËü´ø×ÅÖ½´øÒ»Í¬ÂäÏ£¬Èç¹ûÏÈ·Å¿ªÖ½´øÈÃÖØÎïÏÂÂ䣬ÔÙ½Óͨ´òµã¼ÆÊ±Ê±Æ÷µÄµçÔ´£¬ÓÉÓÚÖØÎïÔ˶¯½Ï¿ì£¬²»ÀûÓÚÊý¾ÝµÄ²É¼¯ºÍ´¦Àí£¬»á¶ÔʵÑé²úÉú½Ï´óµÄÎó²î£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºB£»
£¨3£©ÖØÁ¦ÊÆÄܵļõСÁ¿¡÷Ep=mgh=1¡Á9.8¡Á0.0486J¡Ö0.48J£¬
¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek=$\frac{1}{2}$mvB2=$\frac{1}{2}$¡Á1¡Á£¨0.97£©2¡Ö0.47J£®
£¨4£©Í¨¹ý¼ÆËã¿ÉÖª¡÷Ep£¾¡÷Ek£¬ÒòΪֽ´øÏÂÂä¹ý³ÌÖдæÔÚĦ²Á×èÁ¦×÷Óã¬ÕâÊÇϵͳÎó²îÔì³ÉµÄ£»
£¨5£©¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉÓУºmgh=$\frac{1}{2}$mv2£¬
µÃ£ºv2=2gh£¬¹Êv2-hͼÏóÊǹýÔµãµÄÒ»ÌõÖ±Ïߣ¬
Ö±ÏßµÄбÂÊk=2g£¬ÄÇôg=$\frac{k}{2}$£»
¹Ê´ð°¸Îª£º£¨1£©FG£»£¨2£©B£» £¨3£©0.48£¬0.47£»£¨4£©´óÓÚ£¬ÏµÍ³£»£¨5£©$\frac{k}{2}$£®
µãÆÀ ¶ÔÓÚ»ù´¡ÊµÑéÒª´ÓʵÑéÔÀí³ö·¢È¥Àí½â£¬ÒªÇ××Ô¶¯ÊÖʵÑ飬Éî¿ÌÌå»áʵÑéµÄ¾ßÌå²Ù×÷£¬²»Äܵ¥Æ¾¼ÇÒäÈ¥Àí½âʵÑ飮ÔÚʵÑéÖÐ×¢ÒâÌå»áʵÑéµÄÎó²îÀ´Ô´£¬²¢ÄÜÕÒµ½ºÏÊʵķ½ÏòÈ¥¼õСÎó²î£»
²¢ÕÆÎÕÇó˲ʱËٶȵķ½·¨£¬¼°Àí½â»úеÄÜÊØºã¶¨ÂɵÄÌõ¼þ£¬×¢Òâv2-hͼÏóµÄбÂʵĺ¬Ò壮
| A£® | cµã | B£® | dµã | C£® | eµã | D£® | fµã |
| A£® | 0-t1ʱ¼äÄÚ£¬Æû³µ×ö±ä¼ÓËÙÔ˶¯ | B£® | 0-t2ʱ¼äÄÚ£¬Æû³µ×öÔȼÓËÙÔ˶¯ | ||
| C£® | Æû³µµÄ¶î¶¨¹¦ÂÊP=Ffv1 | D£® | Æû³µµÄ¶î¶¨¹¦ÂÊP=Ffv2 |
| A£® | F1Öð½¥±ä´ó£¬F2Öð½¥±äС | |
| B£® | F1Öð½¥±äС£¬F2Öð½¥±äС | |
| C£® | F1ÏÈÖð½¥±äСºóÖð½¥±ä´ó£¬F2Öð½¥±äС | |
| D£® | F1ÏÈÖð½¥±ä´óºóÖð½¥±äС£¬F2Öð½¥±äС |
| A£® | v¡¢a¶¼Ôö´ó | B£® | ¦Ø¡¢a¶¼¼õС | C£® | T¡¢a¶¼²»±ä | D£® | vÔö´ó£¬¦Ø¼õС |