ÌâÄ¿ÄÚÈÝ
11£®ÈçͼËùʾ£¬ÖÊÁ¿¾ùΪmµÄÎï¿éAºÍBÓÃÇᵯ»ÉÏàÁ¬£¬·ÅÔڹ⻬µÄÐ±ÃæÉÏ£¬Ð±ÃæµÄÇã½Ç¦È=30¡ã£¬BÓëÐ±Ãæµ×¶ËµÄ¹Ì¶¨µ²°å½Ó´¥£¬µ¯»ÉµÄ¾¢¶ÈϵÊýΪk£¬Aͨ¹ýÒ»¸ùÈÆ¹ý¶¨»¬µÄ²»¿ÉÉ쳤µÄÇáÉþÓë·ÅÔÚË®Æ½ÃæÉϵÄÎï¿éCÏàÁ¬£¬¸÷¶ÎÉþ¾ù´¦ÓÚ¸ÕºÃÉìֱ״̬£¬AÉ϶ÎÉþÓëÐ±ÃæÆ½ÐУ¬C×ó²àÉþÓëË®Æ½ÃæÆ½ÐУ¬CµÄÖÊÁ¿Ò²Îªm£¬Ð±Ãæ×ã¹»³¤£¬Îï¿éCÓëË®Æ½Ãæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì=0.5£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£®ÏÖ¸øCÓëÒ»¸öÏòÓҵijõËÙ¶È£¬µ±CÏòÓÒÔ˶¯µ½ËÙ¶ÈΪÁãʱ£¬B¸ÕºÃÒªÀ뿪µ²°å£¬Ç󣺣¨1£©Îï¿éC¿ªÊ¼ÏòÓÒÔ˶¯µÄ³õËÙ¶È´óС£»
£¨2£©Èô¸øCÊ©¼ÓÒ»¸öÏòÓÒµÄˮƽºãÁ¦F1£¨Î´Öª£©Ê¹CÏòÓÒÔ˶¯£¬µ±B¸ÕºÃÒªÀ뿪µ²°åʱ£¬Îï¿éAµÄËÙ¶È´óСΪv£¬ÔòÀÁ¦F1¶à´ó£¿
£¨3£©Èô¸øCÒ»¸öÏòÓÒµÄˮƽºãÁ¦F2£¨Î´Öª£©Ê¹CÏòÓÒÔ˶¯£¬µ±B¸ÕºÃÒªÀ뿪µ²°åʱ£¬Îï¿éAµÄ¼ÓËÙ¶È´óСΪa£¬´ËʱÀÁ¦F2×öµÄ¹¦ÊǶàÉÙ£¿
·ÖÎö £¨1£©ÏÈ·ÖÎöµ¯»ÉµÄ³õĩ״̬£¬Åжϳö´Ë¹ý³ÌÖе¯»Éµ¯ÐÔÊÆÄܵı仯Á¿ÎªÁ㣬¶ÔA¡¢C¼°µ¯»É×é³ÉµÄϵͳ£¬ÔËÓûúеÄÜÊØºã¶¨ÂÉÁÐʽ£¬¼´¿ÉÇó½âÎï¿éC¿ªÊ¼ÏòÓÒÔ˶¯µÄ³õËÙ¶È´óС£»
£¨2£©Ïȸù¾Ýºú¿Ë¶¨Âɺͼ¸ºÎ¹ØÏµÇó³öAÉÏ»¬µÄ¾àÀ룬ÔÙ¶ÔA¡¢C¼°µ¯»É×é³ÉµÄϵͳ£¬ÔËÓù¦ÄÜÔÀíÇóÀÁ¦F1£®
£¨3£©¶ÔA¡¢C·Ö±ðÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽ£¬Çó³öÀÁ¦F2£¬ÔÙÓɹ¦µÄ¼ÆË㹫ʽÇóÀÁ¦F2×öµÄ¹¦£®
½â´ð ½â£º£¨1£©µ¯»ÉÔÀ´µÄѹËõÁ¿Îª£»
x1=$\frac{mgsin¦È}{k}$=$\frac{mg}{2k}$
B¸ÕºÃÒªÀ뿪µ²°åʱµ¯»ÉµÄÉ쳤Á¿Îª£º
x2=$\frac{mgsin¦È}{k}$=$\frac{mg}{2k}$
ÔòÓУºx1=x2£®
ËùÒÔ³õĩ״̬µ¯»ÉµÄµ¯ÐÔÊÆÄÜÏàµÈ£®¶ÔA¡¢C¼°µ¯»É×é³ÉµÄϵͳ£¬ÔËÓûúеÄÜÊØºã¶¨Âɵãº
2¡Á$\frac{1}{2}m{v}_{0}^{2}$=mgsin¦È•£¨x1+x2£©
½âµÃCµÄ³õËÙ¶ÈΪ£ºv0=$\sqrt{\frac{m{g}^{2}}{2k}}$
£¨2£©AÉÏ»¬µÄ¾àÀëΪ£ºs=x1+x2=$\frac{mg}{k}$
¶ÔA¡¢C¼°µ¯»É×é³ÉµÄϵͳ£¬ÔËÓù¦ÄÜÔÀíµÃ£º
F1s=mgsin¦È•s+2¡Á$\frac{1}{2}m{v}^{2}$
¿ÉµÃ£ºF1=$\frac{1}{2}$mg+$\frac{k{v}^{2}}{g}$
£¨3£©µ±B¸ÕºÃÒªÀ뿪µ²°åʱ£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
¶ÔAÓУºT-mgsin¦È-kx2=ma
¶ÔCÓУºF2-T=ma
ÀÁ¦F2×öµÄ¹¦Îª£ºW=F2s
ÁªÁ¢½âµÃ£ºW=$\frac{{m}^{2}g£¨g+2a£©}{k}$
´ð£º£¨1£©Îï¿éC¿ªÊ¼ÏòÓÒÔ˶¯µÄ³õËÙ¶È´óСÊÇ$\sqrt{\frac{m{g}^{2}}{2k}}$£»
£¨2£©ÀÁ¦F1Ϊ$\frac{1}{2}$mg+$\frac{k{v}^{2}}{g}$£®
£¨3£©´ËʱÀÁ¦F2×öµÄ¹¦ÊÇ$\frac{{m}^{2}g£¨g+2a£©}{k}$£®
µãÆÀ ±¾ÌâÊÇÁ¬½ÓÌåÎÊÌ⣬ҪץסA¡¢CµÄËÙ¶È´óСÏàµÈ¡¢¼ÓËÙ¶È´óСÏàµÈ£¬ÒªÁé»îÑ¡ÔñÑо¿¶ÔÏ󣬲ÉÓøôÀë·¨ºÍÕûÌå·¨Ïà½áºÏµÄ·½·¨Ñо¿¹¦ÄܹØÏµ¡¢Á¦Óë¼ÓËٶȵĹØÏµ£®
| A£® | Ïß¿ò½øÈë´Å³¡Ê±µÄËÙ¶ÈΪ$\sqrt{gh}$ | |
| B£® | Ïß¿ò´©³ö´Å³¡Ê±µÄËÙ¶ÈΪ$\frac{mgR}{{B}^{2}{L}^{2}}$ | |
| C£® | Ïß¿òͨ¹ý´Å³¡µÄ¹ý³ÌÖвúÉúµÄÈÈÁ¿Q=8mgh-$\frac{8{m}^{3}{g}^{2}{R}^{2}}{{B}^{4}{L}^{4}}$ | |
| D£® | Ïß¿ò½øÈë´Å³¡ºó£¬Èôijһʱ¿ÌµÄËÙ¶ÈΪv£¬Ôò¼ÓËÙ¶ÈΪa=$\frac{1}{2}$g-$\frac{{B}^{2}{L}^{2}v}{4mR}$ |
| A£® | ¡°æÏ¶ð¶þºÅ¡±»·ÔÂÔËÐеÄÖÜÆÚ±È¡°æÏ¶ðÒ»ºÅ¡±Ð¡ | |
| B£® | ¡°æÏ¶ð¶þºÅ¡±»·ÔÂÔËÐеÄÏßËٶȱȡ°æÏ¶ðÒ»ºÅ¡±Ð¡ | |
| C£® | ¡°æÏ¶ð¶þºÅ¡±»·ÔÂÔËÐеÄÏòÐļÓËٶȱȡ°æÏ¶ðÒ»ºÅ¡±´ó | |
| D£® | ¡°æÏ¶ð¶þºÅ¡±»·ÔÂÔËÐеÄÏòÐÄÁ¦Óë¡°æÏ¶ðÒ»ºÅ¡±ÏàµÈ |
| A£® | 2¦ÌmgL | B£® | ¦ÌmgL | C£® | ¦Ì£¨M+m£©gL | D£® | $\frac{¦ÌmgL}{2}$ |
| A£® | ÎïÌåÓë´«ËÍ´ø¼äµÄ¶¯Ä¦²ÁÒòÊýΪ0.75 | |
| B£® | 0¡«8sÄÚÎïÌåÎ»ÒÆµÄ´óСΪ14m | |
| C£® | 0¡«8sÄÚÎïÌå»úеÄܵÄÔöÁ¿Îª84J | |
| D£® | 0¡«8sÄÚÎïÌåÓë´«ËÍ´øÖ®¼äÒòĦ²Á¶ø²úÉúµÄÈÈÁ¿Îª126J |