ÌâÄ¿ÄÚÈÝ
13£®£¨1£©³õʼʱ¿ÌcdÁ½¶ËµÄµçѹ£»
£¨2£©Ôڸùý³ÌÖÐRÉϲúÉúµÄÈÈÁ¿£»
£¨3£©ÀÁ¦×öµÄ¹¦£®
·ÖÎö £¨1£©¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂɿɵøÐÓ¦µç¶¯ÊÆ£¬¸ù¾Ý´®ÁªµçÂ·ÌØµãÇó½â³õʼʱ¿ÌcdÁ½¶ËµÄµçѹ£»
£¨2£©·ÖÎöµç·Öеç´Å¸ÐÓ¦²úÉúµÄ¸ÐÓ¦µçÁ÷µÄÌØµã£¬Çó³öµçÁ÷µÄÓÐЧֵ£¬¸ù¾Ý½¹¶ú¶¨ÂÉÇó½âRÉϲúÉúµÄÈÈÁ¿£»
£¨3£©Óɶ¯Äܶ¨Àí¿ÉµÃÀÁ¦×öµÄ¹¦£®
½â´ð ½â£º£¨1£©¸Õ½øÈëʱ£¬¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂɿɵøÐÓ¦µç¶¯ÊÆÎª£ºE=BLv0£¬
¸ù¾Ý´®ÁªµçÂ·ÌØµã¿ÉÖª£ºUÍ⣺UÄÚ=3£º1£¬
½âµÃ£º${U_{cd}}={U_Íâ}=\frac{3}{4}BL{v_0}$
£¨2£©µ¼Ìå°ôÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Ï൱ÓÚ¾ØÐÎÏßȦһÌõ±ß¿òÔڴų¡ÖÐת¶¯£¬Òòµç´Å¸ÐÓ¦²úÉúµÄ¸ÐÓ¦µçÁ÷ΪÕý¡¢ÓàÏÒ½»Á÷µç£¬ËùÒÔÓУº
${E_m}=BLr\frac{v_0}{r}=BL{v_0}$
µçÁ÷µÄÓÐЧֵΪ£º$I=\frac{{\frac{E_m}{{\sqrt{2}}}}}{{R+\frac{R}{3}}}$
ËùÒÔRÉϲúÉúµÄÈÈÁ¿Îª£º
${Q_R}={I^2}Rt$£¬
¾¹ýµÄʱ¼äΪ£º$t=\frac{{r\frac{¦Ð}{2}}}{v_0}$£¬
½âµÃ£º${Q_R}=\frac{{9¦Ð{B^2}{L^2}{v_0}}}{64R}r$£»
£¨3£©Óɶ¯Äܶ¨Àí¿ÉµÃ£º${W_F}-mgr+{Q_×Ü}=\frac{1}{2}mv_0^2-\frac{1}{2}mv_0^2$
ÆäÖУº${Q_×Ü}={I^2}£¨R+\frac{R}{3}£©t$£¬
½âµÃ£º${W_F}=mgr+\frac{{3¦Ð{B^2}{L^2}{v_0}}}{16R}r$£®
´ð£º£¨1£©³õʼʱ¿ÌcdÁ½¶ËµÄµçѹΪ$\frac{3}{4}BL{v}_{0}$£»
£¨2£©Ôڸùý³ÌÖÐRÉϲúÉúµÄÈÈÁ¿Îª$\frac{9¦Ð{B}^{2}{L}^{2}{v}_{0}}{64R}r$£»
£¨3£©ÀÁ¦×öµÄ¹¦Îª$mgr+\frac{3¦Ð{B}^{2}{L}^{2}{v}_{0}}{16R}r$£®
µãÆÀ ¶ÔÓÚµç´Å¸ÐÓ¦ÎÊÌâÑо¿Ë¼Â·³£³£ÓÐÁ½Ìõ£ºÒ»Ìõ´ÓÁ¦µÄ½Ç¶È£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ»òƽºâÌõ¼þÁгö·½³Ì£»ÁíÒ»ÌõÊÇÄÜÁ¿£¬·ÖÎöÉæ¼°µç´Å¸ÐÓ¦ÏÖÏóÖеÄÄÜÁ¿×ª»¯ÎÊÌ⣬¸ù¾Ý¶¯Äܶ¨Àí¡¢¹¦ÄܹØÏµµÈÁз½³ÌÇó½â£®±¾ÌâÒªÖªµÀ¸ÐÓ¦µçÁ÷µÄÌØµã£¬Äܹ»ÀûÓÃÓÐЧֵ½øÐÐÇó½âÈÈÁ¿£®
| A£® | 12N | B£® | 16N | C£® | 20N | D£® | 24N |
| A£® | ¼ÓËÙ¶ÈÖ®±ÈΪ2£º1 | B£® | °ë¾¶Ö®±ÈΪ2£º1 | C£® | ÖÜÆÚÖ®±ÈΪ1£º2 | D£® | ½ÇËÙ¶ÈÖ®±ÈΪ1£º2 |
| A£® | ¼×ÇòÏ»¬µÄ¹ý³ÌÖУ¬Çá¸Ë¶ÔÆä×öÕý¹¦ | |
| B£® | ¼×Çò»¬»ØÊ±£¬Ò»¶¨Äܻص½³õʼλÖà | |
| C£® | ¼×Çò¿ÉÑØ¹ìµÀÏ»¬µ½×îµÍµã | |
| D£® | ÔÚ¼×Çò»¬»ØµÄ¹ý³ÌÖУ¬¸Ë¶Ô¼×Çò×öµÄ¹¦´óÓڸ˶ÔÒÒÇò×öµÄ¹¦ |
| A£® | BµãΪÖд¹ÏßÉϵ糡ǿ¶È×î´óµÄµã£¬³¡Ç¿E=0.2N/C | |
| B£® | ÓÉCµ½AµÄ¹ý³ÌÖÐÎï¿éµÄµçÊÆÄÜÏȼõСºóÔö´ó | |
| C£® | A¡¢BÁ½µã¼äµÄµçÊÆ²îUAB=5V | |
| D£® | UCB£¼UBA |