【题目】设函数().
(Ⅰ)当时,求不等式的解集;
(Ⅱ)求证:,并求等号成立的条件.
【题目】在平面直角坐标系中,直线的普通方程为,曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系.
(Ⅰ)求直线的参数方程和极坐标方程;
(Ⅱ)设直线与曲线相交于两点,求的值.
【题目】某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本固定成本生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数的解析式(利润销售收入总成本);
(2)工厂生产多少台产品时,可使盈利最多?
【题目】(1)已知直线经过点,倾斜角.设与圆相交与两点A,B,求点P到两点的距离之积.
(2)在极坐标系中,圆C的方程为,直线的方程为.
①若直线过圆C的圆心,求实数的值;
②若,求直线被圆C所截得的弦长.
【题目】一个盒子中装有标号为1,2,3,4,5的5张标签,随机地依次选取两张标签,根据下列条件求两张标签上的数字为相等整数的概率;
(1)标签的选取是不放回的;
(2)标签的选取是有放回的.
【题目】如图,矩形中,,为的中点,现将与折起,使得平面及平面都与平面垂直.
(1)求证:平面;
(2)求二面角的余弦值.
【题目】已知函数,.若不等式在上恒成立,则的最小值为( )
A. B. 1 C. D.
【题目】已知函数.
(1)若,求函数的值域;
(2)若函数的定义域、值域都为,且在上单调,求实数b的取值范围.
【题目】(本小题满分16分)已知为实数,函数,函数.
(1)当时,令,求函数的极值;
(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.