题目内容
【题目】(1)已知直线经过点,倾斜角.设与圆相交与两点A,B,求点P到两点的距离之积.
(2)在极坐标系中,圆C的方程为,直线的方程为.
①若直线过圆C的圆心,求实数的值;
②若,求直线被圆C所截得的弦长.
【答案】(1)2;(2)①;②
【解析】
(1)求出直线的参数方程,并代入圆的方程,利用直线参数方程的几何意义即可求解;
(2)将极坐标方程化为直角坐标方程,①将圆心代入直线即可求出
②先求出圆心到直线的距离,根据弦长公式即可得出直线被圆C所截得的弦长.
(1)直线的参数方程为,即.
把直线代入,
得,,,
则点P到A,B两点的距离之积为2.
(2)①以极点为坐标原点,极轴所在直线为x轴建立直角坐标系.
由得,
则圆C的直角坐标方程是,
圆心坐标为,半径.
由,得,
则直线l的直角坐标方程是.
若直线l通过圆C的圆心,则,所以.
②若,则圆心到直线的距离,
所以直线l被圆C所截得的弦长为.
练习册系列答案
相关题目