题目内容

【题目】一个盒子中装有标号为1,2,3,4,55张标签,随机地依次选取两张标签,根据下列条件求两张标签上的数字为相等整数的概率;

1)标签的选取是不放回的;

2)标签的选取是有放回的.

【答案】10 2

【解析】

(1)求出不放回时所有的基本事件的总数,再得出 事件“两张标签上的数字为相等整数”包含的基本事件个数,利用古典概型的公式计算概率即可;

(2) 求出有放回时所有的基本事件的总数,再得出 事件“两张标签上的数字为相等整数”包含的基本事件个数,利用古典概型的公式计算概率即可;

解:(1)从5张标签中不放回地选取两张标签,用m表示第一张标签的标号,n表示第二张标签的标号,设A=“两张标签上的数字为相等整数,则

1)数组(mn)表示该试验的一个样本点,,且.因此该试验的样本空间,且}中共有20个样本点,其中mn为相等整数的样本点个数.故所求概率为0

2)该试验的样本空间中共有25个样本点,各样本点出现的可能性相等,试验是古典概型,其中,所以,故所求概率为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网