【题目】某学校高三年级有学生750人,其中男生450人,女生300人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分别分为男、女两组,再将两组学生的分数分成5组,分别加以统计,得到如图所示的频率分布直方图.
![]()
(1)从样本中分数小于110分的学生中随机抽取两人,求两人性别相同的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,试判断能否在犯错误的概率不超过0.1的前提下认为“数学尖子生与性别有关”.
附: ![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
【题目】2017年5月,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购。为拓展市场,某调研组对甲、乙两个品牌的共享单车在5个城市的用户人数进行统计,得到如下数据:
城市 品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(百万) | 4 | 3 | 8 | 6 | 12 |
乙品牌(百万) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果共享单车用户人数超过5百万的城市称为“优质潜力城市”,否则“非优”,请据此判断是否有85%的把握认为“优质潜力城市”与共享单车品牌有关?
(Ⅱ)如果不考虑其它因素,为拓展市场,甲品牌要从这5个城市中选出3个城市进行大规模宣传.
①在城市Ⅰ被选中的条件下,求城市Ⅱ也被选中的概率;
②以
表示选中的城市中用户人数超过5百万的个数,求随机变量
的分布列及数学期望
.
下面临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: K2=
,n=a+b+c+d