9.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为$\frac{4}{10}$.
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?
参考数据:(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 优秀 | 非优秀 | 合计 | |
| 甲班 | 10 | ||
| 乙班 | 30 | ||
| 合计 |
(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
8.为了解学生喜欢数学是否与性别有关,对100个学生进行了问卷调查,得到了如下的列联表:
已知在全部100人中随机抽取1人抽到喜欢数学的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上面的列联表补充完整(不写计算过程);
(Ⅱ)能否在犯错误的概率不超过1%的前提下认为喜欢数学与性别有关系?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
下面的临界值表供参考:
| 喜欢数学 | 不喜欢数学 | 合计 | |
| 男生 | 40 | ||
| 女生 | 30 | ||
| 合计 | 100 |
(Ⅰ)请将上面的列联表补充完整(不写计算过程);
(Ⅱ)能否在犯错误的概率不超过1%的前提下认为喜欢数学与性别有关系?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
下面的临界值表供参考:
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
4.若A=(x+3)(x+7),B=(x+4)(x+6),则A、B的大小关系为( )
| A. | A<B | B. | A=B | C. | A>B | D. | 不确定 |
3.已知函数$f(x)=\left\{\begin{array}{l}{log_3}x,x>0\\{2^x},x≤0\end{array}\right.$,则$f[{f({\frac{1}{9}})}]$的值为( )
0 241332 241340 241346 241350 241356 241358 241362 241368 241370 241376 241382 241386 241388 241392 241398 241400 241406 241410 241412 241416 241418 241422 241424 241426 241427 241428 241430 241431 241432 241434 241436 241440 241442 241446 241448 241452 241458 241460 241466 241470 241472 241476 241482 241488 241490 241496 241500 241502 241508 241512 241518 241526 266669
| A. | $\frac{1}{4}$ | B. | 4 | C. | 2 | D. | $\frac{1}{2}$ |