8.已知复数z满足$\frac{1+2i}{z}$=i,则|z|=( )
| A. | 3 | B. | 5 | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
7.为了解某班学生喜爱篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱篮球与性别有关?说明你的理由;
(3)以该班学生的情况来估计全校女生喜爱篮球的情况,用频率代替概率.现从全校女生中抽取3人进一步调查,设抽到喜爱篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
0 240672 240680 240686 240690 240696 240698 240702 240708 240710 240716 240722 240726 240728 240732 240738 240740 240746 240750 240752 240756 240758 240762 240764 240766 240767 240768 240770 240771 240772 240774 240776 240780 240782 240786 240788 240792 240798 240800 240806 240810 240812 240816 240822 240828 240830 240836 240840 240842 240848 240852 240858 240866 266669
| 喜爱篮球 | 不喜爱篮球 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱篮球与性别有关?说明你的理由;
(3)以该班学生的情况来估计全校女生喜爱篮球的情况,用频率代替概率.现从全校女生中抽取3人进一步调查,设抽到喜爱篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |