8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{a}$=1(a>0)与双曲线$\frac{{x}^{2}}{{m}^{2}+2}$+$\frac{{y}^{2}}{{m}^{2}-4}$=1有相同的焦点,则椭圆的离心率为( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{2}}{3}$ |
7.
一次考试中,五名学生的数学、物理成绩如下表所示:
(1)根据上表数据在图中作散点图,求y与x的线性回归方程;
(2)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率.
参考公式:回归直线的方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
| 学生 | A | B | C | D | E |
| 数学成绩x(分) | 89 | 91 | 93 | 95 | 97 |
| 物理成绩y(分) | 87 | 89 | 89 | 92 | 93 |
(2)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率.
参考公式:回归直线的方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
6.为了解某地房价环比(所谓环比,简单说就是与相连的上一期相比)涨幅情况,如表记录了某年1月到5月的月份x(单位:月)与当月上涨的百比率y之间的关系:
(1)根据如表提供的数据,求y关于x的线性回归方程y=$\widehat{b}$x+$\widehat{a}$;
(2)预测该地6月份上涨的百分率是多少?
(参考公式:用最小二乘法求线性回归方程系数公式$\widehat{b}$=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
0 240623 240631 240637 240641 240647 240649 240653 240659 240661 240667 240673 240677 240679 240683 240689 240691 240697 240701 240703 240707 240709 240713 240715 240717 240718 240719 240721 240722 240723 240725 240727 240731 240733 240737 240739 240743 240749 240751 240757 240761 240763 240767 240773 240779 240781 240787 240791 240793 240799 240803 240809 240817 266669
| 时间x | 1 | 2 | 3 | 4 | 5 |
| 上涨率y | 0.1 | 0.2 | 0.3 | 0.3 | 0.1 |
(2)预测该地6月份上涨的百分率是多少?
(参考公式:用最小二乘法求线性回归方程系数公式$\widehat{b}$=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)