题目内容
11.设i为虚数单位,若2+ai=b-3i(a、b∈R),则a+bi=-3+2i.分析 直接由2+ai=b-3i(a、b∈R),求出a,b的值得答案.
解答 解:由2+ai=b-3i(a、b∈R),
得a=-3,b=2.
则a+bi=-3+2i.
故答案为:-3+2i.
点评 本题考查了复数相等的充要条件,是基础题.
练习册系列答案
相关题目
1.已知点$M({-6,3\sqrt{5}})$在双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线上,C的焦距为12,则C的方程为( )
| A. | $\frac{x^2}{8}-\frac{y^2}{10}=1$ | B. | $\frac{x^2}{10}-\frac{y^2}{8}=1$ | C. | $\frac{x^2}{16}-\frac{y^2}{20}=1$ | D. | $\frac{x^2}{20}-\frac{y^2}{16}=1$ |
6.为了解某地房价环比(所谓环比,简单说就是与相连的上一期相比)涨幅情况,如表记录了某年1月到5月的月份x(单位:月)与当月上涨的百比率y之间的关系:
(1)根据如表提供的数据,求y关于x的线性回归方程y=$\widehat{b}$x+$\widehat{a}$;
(2)预测该地6月份上涨的百分率是多少?
(参考公式:用最小二乘法求线性回归方程系数公式$\widehat{b}$=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
| 时间x | 1 | 2 | 3 | 4 | 5 |
| 上涨率y | 0.1 | 0.2 | 0.3 | 0.3 | 0.1 |
(2)预测该地6月份上涨的百分率是多少?
(参考公式:用最小二乘法求线性回归方程系数公式$\widehat{b}$=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
3.若x、y满足约束条件$\left\{\begin{array}{l}{x+2y≤1}\\{2x+y≥-1}\\{x-y≤0}\end{array}\right.$,则z=3x-2y的最小值为( )
| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | -5 | D. | 5 |