17.现有10个数,它们能构成一个以2为首项,-2为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是( )
| A. | $\frac{1}{10}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{7}{10}$ |
16.下列说法正确的是( )
| A. | “x<1”是“log2(x+1)<1”的充分不必要条件 | |
| B. | 命题“?x>0,2x>1”的否定是,“?x0≤0,${2}^{{x}_{0}}$≤1” | |
| C. | 命题“若a≤b,则ac2≤bc2”的逆命题是真命题 | |
| D. | 命题“若a+b≠5,则a≠2或b≠3”的逆否命题为真命题 |
15.已知函数f(x)=aln(x+1)-x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式$\frac{{f({p+1})-f({q+1})}}{p-q}>1$恒成立,则实数a的取值范围为( )
| A. | [15,+∞) | B. | $[{-\frac{1}{8},+∞})$ | C. | [1,+∞) | D. | [6,+∞) |
11.随机调查某社区80个人,以研究这一社区居民的休闲方式是否与性别有关,得到下面的数据表:
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人是以运动为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为休闲方式与性别有关系?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$),其中n=a+b+c+d)
0 240443 240451 240457 240461 240467 240469 240473 240479 240481 240487 240493 240497 240499 240503 240509 240511 240517 240521 240523 240527 240529 240533 240535 240537 240538 240539 240541 240542 240543 240545 240547 240551 240553 240557 240559 240563 240569 240571 240577 240581 240583 240587 240593 240599 240601 240607 240611 240613 240619 240623 240629 240637 266669
| 休闲方式 性别 | 看电视 | 运动 | 合计 |
| 男性 | 20 | 10 | 30 |
| 女性 | 45 | 5 | 50 |
| 合计 | 65 | 15 | 80 |
(2)根据以上数据,能否有99%的把握认为休闲方式与性别有关系?
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |