7.长为$4\sqrt{2}$的线段AB在双曲线x2-y2=1的一条渐近线上移动,C为抛物线y=-x2-2上的点,则△ABC面积的最小值是( )
| A. | $\frac{7}{2}$ | B. | $\frac{7}{5}$ | C. | $\frac{{7\sqrt{2}}}{4}$ | D. | 7 |
6.已知x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x+y-3≥0\\ y≤4\end{array}\right.$,若存在x,y使得2x+y≤a成立,则a的取值范围是( )
| A. | (2,+∞) | B. | [2,+∞) | C. | [4,+∞) | D. | [10,+∞) |
5.设a,b是不同的直线,α,β是不同的平面,则下列四个命题中错误的是( )
| A. | 若a⊥b,a⊥α,b?α,则b∥α | B. | 若a∥α,a⊥β,则α⊥β | ||
| C. | 若a⊥β,α⊥β,则a∥α | D. | 若a⊥b,a⊥α,b⊥β,则α⊥β |
4.已知复数$z=\frac{5i}{3-4i}$(i是虚数单位),则|z|=( )
| A. | 5 | B. | $\sqrt{5}$ | C. | $\frac{1}{5}$ | D. | 1 |
2.为推行“新课改”教学法,某数学老师分别用传统教学和“新课改”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中个随机抽取20名学生的成绩进行统计,结果如表:记成绩不低于105分者为“成绩优良”.
(1)由以上统计数据填写下面的2×2列联表,并判断能否有97.5%的把握认为“成绩优良”与教学方式有关?
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列和数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,(n=a+b+c+d)
临界值表:
| 分数 | [0,90) | [90,105) | [105,1200) | [120,135) | [135,150) |
| 甲班频数 | 5 | 6 | 4 | 4 | 1 |
| 乙班频数 | 1 | 3 | 6 | 5 |
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列和数学期望.
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | |||
| 成绩不优良 | |||
| 总计 |
临界值表:
| P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
18.将函$y=\frac{{\sqrt{3}}}{2}cosx+\frac{1}{2}sinx$数的图象向右平移θ(θ>0)个单位长度后关于y轴对称,则θ的最小值是( )
0 240317 240325 240331 240335 240341 240343 240347 240353 240355 240361 240367 240371 240373 240377 240383 240385 240391 240395 240397 240401 240403 240407 240409 240411 240412 240413 240415 240416 240417 240419 240421 240425 240427 240431 240433 240437 240443 240445 240451 240455 240457 240461 240467 240473 240475 240481 240485 240487 240493 240497 240503 240511 266669
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |