14.数列$\frac{1}{2},\frac{1}{6},\frac{1}{12},\frac{1}{20},…$的一个通项公式是( )
| A. | ${a_n}=\frac{1}{n(n-1)}$ | B. | ${a_n}=\frac{1}{2n(2n-1)}$ | C. | ${a_n}=\frac{1}{n}-\frac{1}{n+1}$ | D. | ${a_n}=1-\frac{1}{n}$ |
11.若实数x,y满足约束条件$\left\{\begin{array}{l}x-2y+3≥0\\ y≥x\\ x≥1\end{array}\right.$,则$z=\frac{y}{x+1}$的最小值为( )
| A. | $\sqrt{3}$ | B. | 1 | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
8.已知两个等差数列{an}和{bn}的前n项和之比为$\frac{7n+1}{4n+27}(n∈{N^*})$,则$\frac{{{a_{11}}}}{{{b_{11}}}}$等于( )
| A. | $\frac{78}{71}$ | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{7}{4}$ |
7.函数$y=\sqrt{{{log}_{\frac{1}{2}}}({x^2}-2)}$的定义域是( )
0 240071 240079 240085 240089 240095 240097 240101 240107 240109 240115 240121 240125 240127 240131 240137 240139 240145 240149 240151 240155 240157 240161 240163 240165 240166 240167 240169 240170 240171 240173 240175 240179 240181 240185 240187 240191 240197 240199 240205 240209 240211 240215 240221 240227 240229 240235 240239 240241 240247 240251 240257 240265 266669
| A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | [-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$) | C. | [-3,-1)∪(1,3] | D. | [-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$] |