15.为了增强环保意识,某校从男生中随机抽取60人,从女生中随机抽取50人,参加环保知识测试,统计数据如下表所示:
(参考数据:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$)
则认为环保知识测试成绩是否优秀与性别有关的把握为( )
(参考数据:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$)
| 优秀 | 非优秀 | 总计 | |
| 男生 | 40 | 20 | 60 |
| 女生 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(X2≥k) | 0.500 | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
| A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |
13.近年来郑州空气污染教委严重,县随机抽取一年(365天)内100天的空气中PM2.5指数的监测数据,统计结果如表:
记某企业每天由空气污染造成的经济损失为S(单位:元),PM2.5指数为x,当x在区间[0,100]内时,对该企业没有造成经济损失;当x在区间(100,300]内时,对该企业造成的经济损失成直线模型(当PM2.5指数为150时造成的经济损失为500元,当PM2.5指数为200时,造成的经济损失为700元);当PM2.5指数大于300时,造成的经济损失为2000元
(1)试写出S(x)的表达式
(2)试估计在本年内随机抽取一天,该天的经济损失大于500元且不超过900元的概率
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关 附:
k2=$\frac{n(ac-bd)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
| PM2.5 | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
| 空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 重度污染 | 中重度污染 | 重度污染 |
| 天数 | 4 | 15 | 18 | 30 | 7 | 11 | 15 |
(1)试写出S(x)的表达式
(2)试估计在本年内随机抽取一天,该天的经济损失大于500元且不超过900元的概率
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关 附:
| P(k2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 1.32 | 2.07 | 2.70 | 3.841 | 5.02 | 6.63 | 7.87 | 10.828 |
| 非重度污染 | 重度污染 | 合计 | |
| 供暖季 | |||
| 非供暖季 | |||
| 合计 | 100 |
12.设等差数列{an}满足$\frac{{{{sin}^2}{a_4}{{cos}^2}{a_7}-{{sin}^2}{a_7}{{cos}^2}{a_4}}}{{sin({a_5}+{a_6})}}=1$,公差d∈(-1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围( )
| A. | $(\frac{7π}{6},\frac{4π}{3})$ | B. | [$\frac{7π}{6}$,$\frac{4π}{3}$] | C. | ($\frac{4π}{3}$,$\frac{3π}{2}$) | D. | f(x) |
11.若实数a,b,c∈(0,1)且10a+9b=9,a+b+c=1,则当$\frac{10}{a}+\frac{1}{9b}$取最小值时,c的值为( )
| A. | $\frac{5}{11}$ | B. | $\frac{2}{11}$ | C. | $\frac{1}{11}$ | D. | 0 |
10.已知0<a<$\frac{1}{2}$,随机变量ξ的分布列如下,则当a增大时( )
| ξ | -1 | 0 | 1 |
| P | a | $\frac{1}{2}$-a | $\frac{1}{2}$ |
| A. | E(ξ)增大,D(ξ)增大 | B. | E(ξ)减小,D(ξ)增大 | C. | E(ξ)增大,D(ξ)减小 | D. | E(ξ)减小,D(ξ)减小 |
7.学习雷锋精神的前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好,单位对学习雷锋精神前后各半年内餐椅的损坏情况做了一个大致统计,具体数据如表:
(1)求学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学校雷锋精神是否有关?
(2)请说明是否有97.5%的把握认为损毁餐椅数量与学习雷锋精神有关?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 损坏餐椅数 | 未损坏餐椅数 | 总 计 | |
| 学习雷锋精神前 | 50 | 150 | 200 |
| 学习雷锋精神后 | 30 | 170 | 200 |
| 总 计 | 80 | 320 | 400 |
(2)请说明是否有97.5%的把握认为损毁餐椅数量与学习雷锋精神有关?
| p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
6.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积( )
0 240009 240017 240023 240027 240033 240035 240039 240045 240047 240053 240059 240063 240065 240069 240075 240077 240083 240087 240089 240093 240095 240099 240101 240103 240104 240105 240107 240108 240109 240111 240113 240117 240119 240123 240125 240129 240135 240137 240143 240147 240149 240153 240159 240165 240167 240173 240177 240179 240185 240189 240195 240203 266669
| A. | $\frac{8}{3}$ | B. | $\frac{32}{3}$π | C. | $\frac{8}{3}$π | D. | 24π |