17.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=( )
| A. | 0.6826 | B. | 0.3413 | C. | 0.4603 | D. | 0.9207 |
14.在极坐标系中,曲线C:sinθ=|cosθ|上不同的两点M,N到直线l:ρcosθ-2ρsinθ=2的距离为$\sqrt{5}$,则|MN|=( )
| A. | $2\sqrt{5}$ | B. | $4\sqrt{5}$ | C. | 8 | D. | 16 |
13.下列参数方程中表示直线x+y-2=0的是( )
| A. | $\left\{\begin{array}{l}x=2+t\\ y=1-t\end{array}\right.(t$为参数) | B. | $\left\{\begin{array}{l}x=1-\sqrt{t}\\ y=1+\sqrt{t}\end{array}\right.(t$为参数) | ||
| C. | $\left\{\begin{array}{l}x=3+t\\ y=-1-t\end{array}\right.(t$为参数) | D. | $\left\{\begin{array}{l}x=1-{t^2}\\ y=1+{t^2}\end{array}\right.(t$为参数) |
12.直线$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.(t$为参数)与圆$\left\{\begin{array}{l}x=4+2cosφ\\ y=2sinφ\end{array}\right.(φ$为参数)相切,则此直线的倾斜角$α({α>\frac{π}{2}})$等于( )
| A. | $\frac{5π}{6}$ | B. | $\frac{3π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{6}$ |
11.某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:
(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;
(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1}•{n}_{2}•{n}_{+1}•{n}_{+2}}$.
| 物理及格 | 物理不及格 | 合计 | |
| 数学及格 | 28 | 8 | 36 |
| 数学不及格 | 16 | 20 | 36 |
| 合计 | 44 | 28 | 72 |
(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1}•{n}_{2}•{n}_{+1}•{n}_{+2}}$.
| P(X2≥k) | 0.150 | 0.100 | 0.050 | 0.010 |
| k | 2.072 | 2.706 | 3.841 | 6.635 |
10.设全集U={x∈R|x>0},函数f(x)=$\frac{1}{\sqrt{lnx-1}}$的定义域为A,则∁UA为( )
0 239805 239813 239819 239823 239829 239831 239835 239841 239843 239849 239855 239859 239861 239865 239871 239873 239879 239883 239885 239889 239891 239895 239897 239899 239900 239901 239903 239904 239905 239907 239909 239913 239915 239919 239921 239925 239931 239933 239939 239943 239945 239949 239955 239961 239963 239969 239973 239975 239981 239985 239991 239999 266669
| A. | (0,e] | B. | (0,e) | C. | (e,+∞) | D. | [e,+∞) |