ÌâÄ¿ÄÚÈÝ
16£®2016Äê¶þÊ®¹ú¼¯ÍÅÁìµ¼ÈË·å»á£¨¼ò³Æ¡°G20·å»á¡±£©ÓÚ9ÔÂ4ÈÕÖÁ5ÈÕÔÚÕ㽺¼ÖÝÕÙ¿ª£¬Îª±£Ö¤»áÒéÆÚ¼ä½»Í¨³©Í¨£¬º¼ÖÝÊÐÒÑ·¢²¼9ÔÂ1ÈÕÖÁ7ÈÕΪ¡°G20·å»á¡±µ÷ÐÝÆÚ¼ä£®¾Ý±¨µÀ¶ÔÓÚº¼ÖÝÊÐÃñ£ºÕã½Ê¡ÂÃÓξÖÁªºÏ11¸öÊпªÕ¹Ò»ÏµÁÐÂÃÓλÝÃñ»î¶¯£¬»î¶¯ÄÚÈÝΪ£º¡°±¾Ê¡ÓΡ±¡¢¡°»ÆÉ½ÓΡ±¡¢¡°Ç¶«ÄÏÓΡ±£¬Ä³ÂÃÓι«Ë¾ÎªÁ˽âȺÖÚ³öÓÎÇé¿ö£¬Äâ²ÉÓ÷ֲã³éÑùµÄ·½·¨´ÓÓÐÒâÔ¸¡°±¾Ê¡ÓΡ±¡¢¡°»ÆÉ½ÓΡ±¡¢¡°Ç¶«ÄÏÓΡ±ÕâÈý¸öÇøÓòÂÃÓεÄȺÖÚÖгéÈ¡7È˽øÐÐijÏîµ÷²é£¬ÒÑÖªÓÐÒâÔ¸²Î¼Ó¡°±¾Ê¡ÓΡ±¡¢¡°»ÆÉ½ÓΡ±¡¢¡°Ç¶«ÄÏÓΡ±µÄȺÖÚ·Ö±ðÓÐ360£¬540£¬360ÈË£®£¨1£©Çó´Ó¡°±¾Ê¡ÓΡ±¡¢¡°»ÆÉ½ÓΡ±¡¢¡°Ç¶«ÄÏÓΡ±£¬Èý¸öÇøÓòÂÃÓεÄȺÖÚ·Ö±ð³éÈ¡µÄÈËÊý£»
£¨2£©Èô´Ó³éµÃµÄ7ÈËÖÐËæ»ú³éÈ¡2È˽øÐе÷²é£¬ÓÃÁоٷ¨¼ÆËãÕâ2ÈËÖÐÖÁÉÙÓÐ1ÈËÓÐÒâÔ¸²Î¼Ó¡°±¾Ê¡ÓΡ±µÄ¸ÅÂÊ£®
·ÖÎö £¨1£©ÏÈÇó³ö¹ÛÖÚ×ÜÊý£¬ÔٷسöÑù±¾ÈÝÁ¿Óë×ÜÌåÖеĸöÌåÊýÖ®±È£¬ÓÉ´ËÄÜÇó³ö´Ó¡°±¾Ê¡ÓΡ±¡¢¡°»ÆÉ½ÓΡ±¡¢¡°Ç¶«ÄÏÓΡ±Èý¸öÇøÓòÖзֱð³éÈ¡µÄÈËÊý£®
£¨2£©ÉèA£¬BΪÔÚ¡°±¾Ê¡ÓΡ±ÖгéµÃµÄ2ÈË£¬C£¬D£¬EΪÔÚ¡°»ÆÉ½ÓΡ±ÖгéµÃµÄ3ÈË£¬a£¬bΪÔÚ¡°Ç¶«ÄÏÓΡ±ÖгéµÃµÄ2ÈË£¬ÓÉ´ËÀûÓÃÁоٷ¨ÄÜÇó³ö´Ó³éµÃµÄ7ÈËÖÐËæ»ú³éÈ¡2È˽øÐе÷²é£¬Õâ2ÈËÖÐÖÁÉÙÓÐ1ÈËÓÐÒâÔ¸²Î¼Ó¡°±¾Ê¡ÓΡ±µÄ¸ÅÂÊ£®
½â´ð ½â£º£¨1£©¹ÛÖÚ×ÜÊýΪ360+540+360=1260£¬
Ñù±¾ÈÝÁ¿Óë×ÜÌåÖеĸöÌåÊýÖ®±ÈΪ$\frac{7}{1260}=\frac{1}{180}$£¬
¡à´Ó¡°±¾Ê¡ÓΡ±¡¢¡°»ÆÉ½ÓΡ±¡¢¡°Ç¶«ÄÏÓΡ±Èý¸öÇøÓòÖзֱð³éÈ¡µÄÈËÊýΪ£º
360¡Á$\frac{1}{180}=2$ÈË£¬540¡Á$\frac{1}{180}=3$£¬360¡Á$\frac{1}{180}=2$ÈË£®
£¨2£©ÉèA£¬BΪÔÚ¡°±¾Ê¡ÓΡ±ÖгéµÃµÄ2ÈË£¬C£¬D£¬EΪÔÚ¡°»ÆÉ½ÓΡ±ÖгéµÃµÄ3ÈË£¬
a£¬bΪÔÚ¡°Ç¶«ÄÏÓΡ±ÖгéµÃµÄ2ÈË£¬
¡à´Ó³éµÃµÄ7ÈËÖÐËæ»ú³éÈ¡2È˽øÐе÷²é£¬»ù±¾Ê¼þÓÐ21ÖÖ£¬·Ö±ðΪ£º
£¨A£¬B£©£¬£¨A£¬C£©£¬£¨A£¬D£©£¬£¨A£¬E£©£¬£¨A£¬a£©£¬£¨A£¬b£©£¬£¨B£¬C£©£¬£¨B£¬D£©£¬£¨B£¬E£©£¬£¨B£¬a£©£¬£¨B£¬b£©£¬
£¨C£¬D£©£¬£¨C£¬E£©£¬£¨C£¬a£©£¬£¨C£¬b£©£¬£¨D£¬E£©£¬£¨D£¬a£©£¬£¨D£¬b£©£¬£¨E£¬a£©£¬£¨E£¬b£©£¬£¨a£¬b£©£¬
Õâ2ÈËÖÐÖÁÉÙÓÐ1ÈËÓÐÒâÔ¸²Î¼Ó¡°±¾Ê¡ÓΡ±°üº¬Ìý»ù±¾Ê¼þÓÐ11¸ö£¬·Ö±ðÊÇ£º
£¨A£¬B£©£¬£¨A£¬C£©£¬£¨A£¬D£©£¬£¨A£¬E£©£¬£¨A£¬a£©£¬£¨A£¬b£©£¬£¨B£¬C£©£¬£¨B£¬D£©£¬
£¨B£¬E£©£¬£¨B£¬a£©£¬£¨B£¬b£©£¬
¡àÕâ2ÈËÖÐÖÁÉÙÓÐ1ÈËÓÐÒâÔ¸²Î¼Ó¡°±¾Ê¡ÓΡ±µÄ¸ÅÂÊP=$\frac{11}{21}$£®
µãÆÀ ±¾Ì⿼²é·Ö²ã³éÑùµÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®
| ÎïÀí¼°¸ñ | ÎïÀí²»¼°¸ñ | ºÏ¼Æ | |
| Êýѧ¼°¸ñ | 28 | 8 | 36 |
| Êýѧ²»¼°¸ñ | 16 | 20 | 36 |
| ºÏ¼Æ | 44 | 28 | 72 |
£¨2£©´Ó³éÈ¡µÄÎïÀí²»¼°¸ñµÄѧÉúÖа´Êýѧ¼°¸ñÓë²»¼°¸ñµÄ±ÈÀý£¬Ëæ»ú³éÈ¡7ÈË£¬ÔÙ´Ó³éÈ¡µÄ7ÈËÖÐËæ»ú³éÈ¡2È˽øÐгɼ¨·ÖÎö£¬ÇóÖÁÉÙÓÐÒ»ÃûÊýѧ¼°¸ñµÄѧÉú¸ÅÂÊ£®
¸½£ºx2=$\frac{n£¨{n}_{11}{n}_{22}-{n}_{21}{n}_{12}£©^{2}}{{n}_{1}•{n}_{2}•{n}_{+1}•{n}_{+2}}$£®
| P£¨X2¡Ýk£© | 0.150 | 0.100 | 0.050 | 0.010 |
| k | 2.072 | 2.706 | 3.841 | 6.635 |
| A£® | 0.1587 | B£® | 0.0228 | C£® | 0.0013 | D£® | 0.4972 |
| A£® | £¨1£¬2£© | B£® | £¨-¡Þ£¬1]¡È[2£¬+¡Þ£© | C£® | £¨-¡Þ£¬3]¡È[6£¬+¡Þ£© | D£® | £¨3£¬6£© |