5.某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.
(1)试根据上述数据完成2×2列联表;
(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系.
参考数据:独立检验随机变量K2的临界值参考表:
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d)
(1)试根据上述数据完成2×2列联表;
| 数学成绩及格 | 数学成绩不及格 | 合计 | |
| 比较细心 | 45 | 10 | 55 |
| 比较粗心 | 15 | 30 | 45 |
| 合计 | 60 | 40 | 100 |
参考数据:独立检验随机变量K2的临界值参考表:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2.已知复数z=x+(x-a)i,若对任意实数x∈(1,2),恒有|z|>|z+i|,则实数a的取值范围为( )
| A. | $({-∞,\frac{1}{2}}]$ | B. | $({-∞,\frac{1}{2}})$ | C. | $[\frac{5}{2},+∞)$ | D. | $({\frac{3}{2},+∞})$ |
20.
已知一三棱柱ABC-A1B1C1各棱长相等,B1在底面ABC上的射影是AC的中点,则异面直线AA1与BC所成角的余弦值为( )
0 239404 239412 239418 239422 239428 239430 239434 239440 239442 239448 239454 239458 239460 239464 239470 239472 239478 239482 239484 239488 239490 239494 239496 239498 239499 239500 239502 239503 239504 239506 239508 239512 239514 239518 239520 239524 239530 239532 239538 239542 239544 239548 239554 239560 239562 239568 239572 239574 239580 239584 239590 239598 266669
| A. | $\frac{\sqrt{7}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{4}{3}$ |