题目内容
5.某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.(1)试根据上述数据完成2×2列联表;
| 数学成绩及格 | 数学成绩不及格 | 合计 | |
| 比较细心 | 45 | 10 | 55 |
| 比较粗心 | 15 | 30 | 45 |
| 合计 | 60 | 40 | 100 |
参考数据:独立检验随机变量K2的临界值参考表:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (1)根据题意填写2×2列联表即可;
(2)根据2×2列联表求得K2的观测值,
对照临界值表即可得出结论.
解答 解:(1)填写2×2列联表如下;
| 数学成绩及格 | 数学成绩不及格 | 合计 | |
| 比较细心 | 45 | 10 | 55 |
| 比较粗心 | 15 | 30 | 45 |
| 合计 | 60 | 40 | 100 |
$k=\frac{{100×{{({45×30-15×10})}^2}}}{60×40×55×45}$=$\frac{2400}{99}>24>10.828$;
所以能在范错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系.
点评 本题考查了独立性检验的应用问题,是基础题.
练习册系列答案
相关题目
19.一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.
(1)求出x,y之间的回归直线方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?
(注:$b=\frac{{\sum _{i=1}^n({{x_i}-\bar x})({{y_i}-\bar y})}}{{\sum _{i=1}^n{{({{x_i}-\bar x})}^2}}}=\frac{{\sum _{i=1}^n{x_i}{y_i}-n•\bar x•\bar y}}{{\sum _{i=1}^nx_i^2-n•{{\bar x}^2}}},a=\bar y-b•\bar x$)
| 投入促销费用x(万元) | 2 | 3 | 5 | 6 |
| 商场实际营销额y(万元) | 100 | 200 | 300 | 400 |
(2)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?
(注:$b=\frac{{\sum _{i=1}^n({{x_i}-\bar x})({{y_i}-\bar y})}}{{\sum _{i=1}^n{{({{x_i}-\bar x})}^2}}}=\frac{{\sum _{i=1}^n{x_i}{y_i}-n•\bar x•\bar y}}{{\sum _{i=1}^nx_i^2-n•{{\bar x}^2}}},a=\bar y-b•\bar x$)
20.
已知一三棱柱ABC-A1B1C1各棱长相等,B1在底面ABC上的射影是AC的中点,则异面直线AA1与BC所成角的余弦值为( )
| A. | $\frac{\sqrt{7}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{4}{3}$ |