题目内容

5.某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.
(1)试根据上述数据完成2×2列联表;
数学成绩及格数学成绩不及格合计
比较细心451055
比较粗心153045
合计6040100
(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系.
参考数据:独立检验随机变量K2的临界值参考表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d)

分析 (1)根据题意填写2×2列联表即可;
(2)根据2×2列联表求得K2的观测值,
对照临界值表即可得出结论.

解答 解:(1)填写2×2列联表如下;

数学成绩及格数学成绩不及格合计
比较细心451055
比较粗心153045
合计6040100
(2)根据2×2列联表可以求得K2的观测值
$k=\frac{{100×{{({45×30-15×10})}^2}}}{60×40×55×45}$=$\frac{2400}{99}>24>10.828$;
所以能在范错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系.

点评 本题考查了独立性检验的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网