题目内容
4.在下列关于吸烟与患肺癌的2×2列联表中,d的值为( )| 不患肺癌 | 患肺癌 | 总计 | |
| 不吸烟 | 7775 | 42 | 7817 |
| 吸烟 | d | ||
| 总计 | 9874 | 9965 |
| A. | 48 | B. | 49 | C. | 50 | D. | 51 |
分析 根据列联表中各数据的关系,求出总计患肺癌的人数,
再计算吸烟且患肺癌的人数.
解答 解:在2×2列联表中,总计患肺癌的人数为9965-9874=91,
则吸烟且患肺癌的人数是d=91-42=49.
故选:B.
点评 本题考查了2×2列联表的应用问题,是基础题.
练习册系列答案
相关题目
15.已知直线ax-by-2=0与曲线y=x2在点P(1,1)处的切线互相垂直,则$\frac{a}{b}$为( )
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
12.已知甲、乙两个容器,甲容器容量为x,装满纯酒精,乙容器容量为z,其中装有体积为y的水(x,y<z,单位:L).现将甲容器中的液体倒入乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器中两种液体充分混合,再将乙容器中的液体倒入甲容器中直至倒满,搅拌使甲容器中液体充分混合,如此称为一次操作,假设操作过程中溶液体积变化忽略不计.设经过n(n∈N*)次操作之后,乙容器中含有纯酒精an(单位:L),下列关于数,列{an}的说法正确的是( )
| A. | 当x=y=a时,数列{an}有最大值$\frac{a}{2}$ | |
| B. | 设bn=an+1-an(n∈N*),则数列{bn}为递减数列 | |
| C. | 对任意的n∈N*,始终有${a_n}≤\frac{xy}{z}$ | |
| D. | 对任意的n∈N*,都有${a_n}≤\frac{xy}{x+y}$ |
9.某城市理论预测2000年到2004年人口总数与年份的关系如表所示
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)此次估计2005年该城市人口总数.
(参考公式:用最小二乘法求线性回归方程系数的公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$)
| 年份200x(年) | 0 | 1 | 2 | 3 | 4 |
| 人口数y(十万) | 5 | 7 | 8 | 11 | 19 |
(2)此次估计2005年该城市人口总数.
(参考公式:用最小二乘法求线性回归方程系数的公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$)
13.
如图,给出了样本容量均为7的A、B两组样本数据的散点图,已知A组样本数据的相关系数为r1,B组数据的相关系数为r2,则( )
| A. | r1>r2>0 | B. | r2>r1>0 | C. | r1<r2<0 | D. | r2<r1<0 |
14.在等差数列{an}中,a3=3,d=2,则a1=( )
| A. | 1 | B. | -1 | C. | 7 | D. | 2 |