5.△ABC中,角A、B、C的对边分别为a、b、c,G是平面△ABC上一点,且满足a•$\overrightarrow{GA}$+b•$\overrightarrow{GB}$+c•$\overrightarrow{GC}$=0,则G是△ABC中的( )
| A. | 内心 | B. | 外心 | C. | 重心 | D. | 垂心 |
4.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2})^{2}]}$.现有周长为4+$\sqrt{10}$的△ABC满足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:
($\sqrt{2}$+1),试用以上给出的公式求得△ABC的面积为( )
($\sqrt{2}$+1),试用以上给出的公式求得△ABC的面积为( )
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{5}}{4}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{5}}{2}$ |
3.变量x,y满足线性约束条件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥-x-1}\end{array}\right.$,目标函数z=kx+y仅在点(0,2)取得最大值,则k的取值范围是( )
| A. | -3<k<1 | B. | k>1 | C. | -1<k<1 | D. | -1<k<3 |
2.已知空间两不同直线m,n,两不同平面α、β,下列命题正确的是( )
| A. | 若m∥α且n∥α,则m∥n | B. | 若m⊥β且m⊥n,则n∥β | ||
| C. | 若m⊥α且m∥β,则α⊥β | D. | 若α⊥β且m⊥α,m⊥n则n⊥β |
1.若x1,x2,…,x2017的平均数为4,标准差为3,且yi=-3(xi-2),i=x1,x2,…,x2017,则新数据y1,y2,…,y2017的平均数和标准差分别为( )
| A. | -6 9 | B. | -6 27 | C. | -12 9 | D. | -12 27 |
20.已知集合A={x||x|≤2},B={x|x2-x-2<0},则A∩∁RB=( )
| A. | R | B. | {x|-2≤x≤-1} | C. | {x|-2≤x≤-1或x>2} | D. | {x|-2≤x≤-1或x=2} |
19.复数z=i2016+($\frac{1+i}{1-i}$)2017(i是虚数单位)的共轭复数$\overline{z}$表示的点在( )
0 239269 239277 239283 239287 239293 239295 239299 239305 239307 239313 239319 239323 239325 239329 239335 239337 239343 239347 239349 239353 239355 239359 239361 239363 239364 239365 239367 239368 239369 239371 239373 239377 239379 239383 239385 239389 239395 239397 239403 239407 239409 239413 239419 239425 239427 239433 239437 239439 239445 239449 239455 239463 266669
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |