7.已知函数f(x)=kx+1在区间(-1,1)上存在零点,则实数k的取值范围是( )
| A. | -1<k<1 | B. | k>1 | C. | k<-1 | D. | k<-1或k>1 |
6.已知函数f(x)=-x2+6x+a2-1,那么下列式子中正确的是( )
| A. | $f(\sqrt{2})<f(3)<f(4)$ | B. | $f(3)<f(\sqrt{2})<f(4)$ | C. | $f(\sqrt{2})<f(4)<f(3)$ | D. | $f(3)<f(4)<f(\sqrt{2})$ |
2.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1(λ,μ∈R),则|$\overrightarrow{OC}$|的最小值为( )
| A. | 1 | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
1.sin72°cos18°+cos72°sin18°的值为( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
17.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知从全部105人中随机抽取1人为优秀的概率为$\frac{2}{7}$.
(1)请完成上面的列联表:若按95%的可靠性要求,根据列联表的数据,能否认为“成绩与班级有关系”;
(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10号的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
0 238880 238888 238894 238898 238904 238906 238910 238916 238918 238924 238930 238934 238936 238940 238946 238948 238954 238958 238960 238964 238966 238970 238972 238974 238975 238976 238978 238979 238980 238982 238984 238988 238990 238994 238996 239000 239006 239008 239014 239018 239020 239024 239030 239036 239038 239044 239048 239050 239056 239060 239066 239074 266669
(1)请完成上面的列联表:若按95%的可靠性要求,根据列联表的数据,能否认为“成绩与班级有关系”;
(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10号的概率.
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 10 | 45 | 55 |
| 乙班 | 20 | 30 | 50 |
| 合计 | 30 | 75 | 105 |
| P(K2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |