9.已知函数y=2sin($\frac{x}{2}$-$\frac{π}{4}$)
(1)用“五点法”作出函数图象;
(2)指出它可由函数y=sinx的图象经过哪些变换而得到;
(3)写出函数的单调增区间.
(1)用“五点法”作出函数图象;
(2)指出它可由函数y=sinx的图象经过哪些变换而得到;
(3)写出函数的单调增区间.
5.下表提供了某工厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 3.6 | 4.5 |
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.
2.已知等差数列{an}前四项中第二项为606,前四项和S4为3883,则该数列第4项为( )
| A. | 3074 | B. | 2065 | C. | 2024 | D. | 2016 |
1.已知A,B是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,若P双曲线上一点,P关于x轴对称点为Q,若直线AP,BQ的斜率分别K1,K2且K1K2=-$\frac{4}{9}$,则该双曲线的离心率为( )
0 224762 224770 224776 224780 224786 224788 224792 224798 224800 224806 224812 224816 224818 224822 224828 224830 224836 224840 224842 224846 224848 224852 224854 224856 224857 224858 224860 224861 224862 224864 224866 224870 224872 224876 224878 224882 224888 224890 224896 224900 224902 224906 224912 224918 224920 224926 224930 224932 224938 224942 224948 224956 266669
| A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\frac{\sqrt{13}}{3}$ |