要制作一个容积为4m3,高为1m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )
| A、80元 | B、120元 |
| C、160元 | D、240元 |
从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
| 1+3i |
| 1-i |
| A、1+2i | B、-1+2i |
| C、1-2i | D、-1-2i |
设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知f(x)为偶函数,当x≥0时,f(x)=
,则不等式f(x-1)≤
的解集为( )
|
| 1 |
| 2 |
A、[
| ||||||||
B、[-
| ||||||||
C、[
| ||||||||
D、[-
|
设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为( )
| A、1+a,4 |
| B、1+a,4+a |
| C、1,4 |
| D、1,4+a |
在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( )
| A、f(x)=x3 | ||
| B、f(x)=3x | ||
C、f(x)=x
| ||
D、f(x)=(
|
直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为
”的( )
| 1 |
| 2 |
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充分必要条件 |
| D、既不充分又不必要条件 |
已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )
| A、{x|x≥0} |
| B、{x|x≤1} |
| C、{x|0≤x≤1} |
| D、{x|0<x<1} |