| A、甲学科总体的方差最小 |
| B、丙学科总体的均值最小 |
| C、乙学科总体的方差及均值都居中 |
| D、甲、乙、丙的总体的均值不相同 |
已知等差数列{an}中,a2=4,a6=12,则公差d等于( )
A、
| ||
B、
| ||
| C、2 | ||
| D、3 |
已知f(x)=
,则f(f(-1))=( )
|
| A、1 | B、0 | C、-1 | D、e |
下列函数在(1,+∞)上是增函数的是( )
| A、y=-2x | ||
B、y=log
| ||
| C、y=-(x-1) | ||
| D、y=|x-1| |
袋中装有白球3个,黑球4个,从中任取3个,
①恰有1个白球和全是白球;
②至少有1个白球和全是黑球;
③至少有1个白球和至少有2个白球;
④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为( )
①恰有1个白球和全是白球;
②至少有1个白球和全是黑球;
③至少有1个白球和至少有2个白球;
④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为( )
| A、① | B、② | C、③ | D、④ |
如图是导函数y=f′(x)的图象,那么函数y=f(x)在下面哪个区间是减函数( )

| A、(x1,x3) |
| B、(x2,x4) |
| C、(x4,x6) |
| D、(x5,x6) |
设函数f(x)=
,类比课本推导等差数列前n项和公式的推导方法计算f(-4)+f(-3)+…+f(0)+f(1)+…+f(4)+f(5)的值为( )
| 1 | ||
2x+
|
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
点P(x,y)在椭圆
+(y-1)2=1上,则x+y的最大值为( )
| (x-2)2 |
| 4 |
A、3+
| ||
B、5+
| ||
| C、5 | ||
| D、6 |
已知函数f(x)=
x3+ax2-4在区间(0,2)上是减函数,则a的范围是( )
| 1 |
| 3 |
| A、(-∞,3] |
| B、[-1,+∞) |
| C、[3,+∞) |
| D、(-∞,-1] |
在△ABC中,角A、B、C所对的边为a,b,c,若a=1,b=
,B=120°,则A等于( )
| 3 |
| A、30° | B、45° |
| C、60° | D、120° |