题目内容
袋中装有白球3个,黑球4个,从中任取3个,
①恰有1个白球和全是白球;
②至少有1个白球和全是黑球;
③至少有1个白球和至少有2个白球;
④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为( )
①恰有1个白球和全是白球;
②至少有1个白球和全是黑球;
③至少有1个白球和至少有2个白球;
④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为( )
| A、① | B、② | C、③ | D、④ |
考点:互斥事件与对立事件
专题:概率与统计
分析:从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,进而可分析四个事件的关系;
解答:
解:从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,故
①恰有1个白球和全是白球,是互斥事件,但不是对立事件,
②至少有1个白球和全是黑球是对立事件;
③至少有1个白球和至少有2个白球不是互斥事件,
④至少有1个白球和至少有1个黑球不是互斥事件,
故选:B
①恰有1个白球和全是白球,是互斥事件,但不是对立事件,
②至少有1个白球和全是黑球是对立事件;
③至少有1个白球和至少有2个白球不是互斥事件,
④至少有1个白球和至少有1个黑球不是互斥事件,
故选:B
点评:本题考查互斥事件和对立事件的关系,对于题目中出现的两个事件,观察两个事件之间的关系,这是解决概率问题一定要分析的问题,本题是一个基础题.
练习册系列答案
相关题目
等比数列{an}的前m项和为4,前2m项和为12,则它的前3m项和是( )
| A、28 | B、48 | C、36 | D、52 |
命题“指数函数y=ax是增函数,而y=(
)x是指数函数,所以y=(
)x是增函数”是假命题,推理错误的原因是( )
| 2 |
| 3 |
| 2 |
| 3 |
| A、使用了归纳推理 |
| B、使用了“三段论”,但大前提是错误的 |
| C、使用了类比推理 |
| D、使用了“三段论”,但小前提是错误的 |
设命题p:平面α∩平面β=l,若m⊥l,则m⊥β;命题q:函数y=sinx的图象关于直线x=
对称.则下列判断正确的是( )
| π |
| 2 |
| A、p为真 | B、¬q为假 |
| C、p∨q为假 | D、p∧q为真 |
在△ABC中,角A、B、C所对的边为a,b,c,若a=1,b=
,B=120°,则A等于( )
| 3 |
| A、30° | B、45° |
| C、60° | D、120° |
若 13+23+33+…+n3=n2(an2+bn+c),n∈N*,则abc=( )
A、
| ||
B、
| ||
C、
| ||
D、
|
若命题“p∧q”为假,且“¬q”为假,则( )
| A、¬p∨q为假 |
| B、p∨q为假 |
| C、¬p∧q为真 |
| D、p∧¬q为真 |
已知a,b,c∈R,且a>b>c,则有( )
| A、|a|>|b|>|c| |
| B、|ab|>ac| |
| C、|a+b|>|a+c| |
| D、|a-c|>|a-b| |