设集合M={x|x=
+
,k∈Z},N={x|x=kπ±
,k∈Z},则M、N的关系是( )
| kπ |
| 2 |
| π |
| 4 |
| π |
| 4 |
| A、M=N | B、M≠N |
| C、M?N | D、M?N |
已知集合M={x|-1<x≤1},N={x|1≤2x<4},则M∩N( )
| A、{x|-1<x<1} |
| B、{x|0≤x<1} |
| C、{x|0≤x≤1} |
| D、{x|-1<x<2} |
“(2x+1)x=0”是“x=0”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知四面体P-ABC,PA⊥平面ABC,若PA=2,AB=BC=AC=
,则该四面体的外接球的体积为( )
| 6 |
A、
| ||
| B、2π | ||
C、2
| ||
D、4
|
下面有关向量数量积的关系式,不正确的一项是( )
A、0•
| ||||||||||||
B、(
| ||||||||||||
C、
| ||||||||||||
D、|
|
已知定义域为R的函数y=f(x)在[0,7]上只有1和3两个零点,且y=f(2-x)与y=(7+x)都是偶函数,则函数y=f(x)在[-2013,2013]上的零点个数为( )
| A、804 | B、805 |
| C、806 | D、807 |
已知z=2x+y,实数x,y满足约束条件
,则z的最大值为( )
|
| A、6 | ||
| B、3 | ||
C、
| ||
D、
|
若△ABC 的三边长分别为a,b,c,面积为s.则△ABC的内切圆半径 r=
;类似的,若四面体ABCD的四个面的面积分别为s1,s2,s3,s4,体积为V,则四面体ABCD的内切球半径r为( )
| 2s |
| a+b+c |
A、
| ||
B、
| ||
C、
| ||
D、
|
事件A,B的概率分别为p1,p2,且p1<p2则( )
| A、P(A∩B)<p1 |
| B、P(A∪B)>p2 |
| C、P(A∪B)=p2+p1 |
| D、以上都不正确 |